Yan Lei
2024
Taking a Deep Breath: Enhancing Language Modeling of Large Language Models with Sentinel Tokens
Weiyao Luo
|
Suncong Zheng
|
Heming Xia
|
Weikang Wang
|
Yan Lei
|
Tianyu Liu
|
Shuang Chen
|
Zhifang Sui
Findings of the Association for Computational Linguistics: EMNLP 2024
Large language models (LLMs) have shown promising efficacy across various tasks, becoming powerful tools in numerous aspects of human life. However, Transformer-based LLMs suffer a performance degradation when modeling long-term contexts due to they discard some information to reduce computational overhead. In this work, we propose a simple yet effective method to enable LLMs to take a deep breath, encouraging them to summarize information contained within discrete text chunks. Specifically, we segment the text into multiple chunks and insert special token <SR> at the end of each chunk. We then modify the attention mask to integrate the chunk’s information into the corresponding <SR> token. This facilitates LLMs to interpret information not only from historical individual tokens but also from the <SR> token, aggregating the chunk’s semantic information. Experiments on language modeling and out-of-domain downstream tasks validate the superiority of our approach.
Qsnail: A Questionnaire Dataset for Sequential Question Generation
Yan Lei
|
Liang Pang
|
Yuanzhuo Wang
|
Huawei Shen
|
Xueqi Cheng
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
The questionnaire is a professional research methodology used for both qualitative and quantitative analysis of human opinions, preferences, attitudes, and behaviors. However, designing and evaluating questionnaires demands significant effort due to their intricate and complex structure. Questionnaires entail a series of questions that must conform to intricate constraints involving the questions, options, and overall structure. Specifically, the questions should be relevant and specific to the given research topic and intent. The options should be tailored to the questions, ensuring they are mutually exclusive, completed, and ordered sensibly. Moreover, the sequence of questions should follow a logical order, grouping similar topics together. As a result, automatically generating questionnaires presents a significant challenge and this area has received limited attention primarily due to the scarcity of high-quality datasets. To address these issues, we present Qsnail, the first dataset specifically constructed for the questionnaire generation task, which comprises 13,168 human-written questionnaires gathered from online platforms. We further conduct experiments on Qsnail, and the results reveal that retrieval models and traditional generative models do not fully align with the given research topic and intents. Large language models, while more closely related to the research topic and intents, exhibit significant limitations in terms of diversity and specificity. Despite enhancements through the chain-of-thought prompt and finetuning, questionnaires generated by language models still fall short of human-written questionnaires. Therefore, questionnaire generation is challenging and needs to be further explored. The dataset will be published in the future.