Effective generation of novel hypotheses is instrumental to scientific progress. So far, researchers have been the main powerhouse behind hypothesis generation by painstaking data analysis and thinking (also known as the Eureka moment). In this paper, we examine the potential of large language models (LLMs) to generate hypotheses. We focus on hypothesis generation based on data (i.e., labeled examples). To enable LLMs to handle Long contexts, we generate initial hypotheses from a small number of examples and then update them iteratively to improve the quality of hypotheses. Inspired by multi-armed bandits, we design a reward function to inform the exploitation-exploration tradeoff in the update process. Our algorithm is able to generate hypotheses that enable much better predictive performance than few-shot prompting in classification tasks, improving accuracy by 31.7% on a synthetic dataset and by 13.9%, 3.3% and, 24.9% on three real-world datasets. We also outperform supervised learning by 12.1% and 11.6% on two challenging real-world datasets. Furthermore, we find that the generated hypotheses not only corroborate human-verified theories but also uncover new insights for the tasks.
Natural language explanations have the potential to provide rich information that in principle guides model reasoning. Yet, recent work by Lampinen et al. has shown limited utility of natural language explanations in improving classification. To effectively learn from explanations, we present FLamE, a two-stage few-shot learning framework that first generates explanations using GPT-3, and then fine-tunes a smaller model (e.g., RoBERTa) with generated explanations. Our experiments on natural language inference demonstrate effectiveness over strong baselines, increasing accuracy by 17.6% over GPT-3 Babbage and 5.7% over GPT-3 Davinci in e-SNLI.Despite improving classification performance, human evaluation surprisingly reveals that the majority of generated explanations does not adequately justify classification decisions. Additional analyses point to the important role of label-specific cues (e.g., “not know” for the neutral label) in generated explanations.
Despite the strong performance of current NLP models, they can be brittle against adversarial attacks. To enable effective learning against adversarial inputs, we introduce the use of rationale models that can explicitly learn to ignore attack tokens. We find that the rationale models can successfully ignore over 90% of attack tokens. This approach leads to consistent sizable improvements (~10%) over baseline models in robustness on three datasets for both BERT and RoBERTa, and also reliably outperforms data augmentation with adversarial examples alone. In many cases, we find that our method is able to close the gap between model performance on a clean test set and an attacked test set and hence reduce the effect of adversarial attacks.
Although neural models have shown strong performance in datasets such as SNLI, they lack the ability to generalize out-of-distribution (OOD). In this work, we formulate a few-shot learning setup and examine the effects of natural language explanations on OOD generalization. We leverage the templates in the HANS dataset and construct templated natural language explanations for each template. Although generated explanations show competitive BLEU scores against ground truth explanations, they fail to improve prediction performance. We further show that generated explanations often hallucinate information and miss key elements that indicate the label.