Yao-Hung Hubert Tsai


2020

pdf bib
Multimodal Routing: Improving Local and Global Interpretability of Multimodal Language Analysis
Yao-Hung Hubert Tsai | Martin Ma | Muqiao Yang | Ruslan Salakhutdinov | Louis-Philippe Morency
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

The human language can be expressed through multiple sources of information known as modalities, including tones of voice, facial gestures, and spoken language. Recent multimodal learning with strong performances on human-centric tasks such as sentiment analysis and emotion recognition are often black-box, with very limited interpretability. In this paper we propose, which dynamically adjusts weights between input modalities and output representations differently for each input sample. Multimodal routing can identify relative importance of both individual modalities and cross-modality factors. Moreover, the weight assignment by routing allows us to interpret modality-prediction relationships not only globally (i.e. general trends over the whole dataset), but also locally for each single input sample, meanwhile keeping competitive performance compared to state-of-the-art methods.

2019

pdf bib
Transformer Dissection: An Unified Understanding for Transformer’s Attention via the Lens of Kernel
Yao-Hung Hubert Tsai | Shaojie Bai | Makoto Yamada | Louis-Philippe Morency | Ruslan Salakhutdinov
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Transformer is a powerful architecture that achieves superior performance on various sequence learning tasks, including neural machine translation, language understanding, and sequence prediction. At the core of the Transformer is the attention mechanism, which concurrently processes all inputs in the streams. In this paper, we present a new formulation of attention via the lens of the kernel. To be more precise, we realize that the attention can be seen as applying kernel smoother over the inputs with the kernel scores being the similarities between inputs. This new formulation gives us a better way to understand individual components of the Transformer’s attention, such as the better way to integrate the positional embedding. Another important advantage of our kernel-based formulation is that it paves the way to a larger space of composing Transformer’s attention. As an example, we propose a new variant of Transformer’s attention which models the input as a product of symmetric kernels. This approach achieves competitive performance to the current state of the art model with less computation. In our experiments, we empirically study different kernel construction strategies on two widely used tasks: neural machine translation and sequence prediction.

pdf bib
Strong and Simple Baselines for Multimodal Utterance Embeddings
Paul Pu Liang | Yao Chong Lim | Yao-Hung Hubert Tsai | Ruslan Salakhutdinov | Louis-Philippe Morency
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Human language is a rich multimodal signal consisting of spoken words, facial expressions, body gestures, and vocal intonations. Learning representations for these spoken utterances is a complex research problem due to the presence of multiple heterogeneous sources of information. Recent advances in multimodal learning have followed the general trend of building more complex models that utilize various attention, memory and recurrent components. In this paper, we propose two simple but strong baselines to learn embeddings of multimodal utterances. The first baseline assumes a conditional factorization of the utterance into unimodal factors. Each unimodal factor is modeled using the simple form of a likelihood function obtained via a linear transformation of the embedding. We show that the optimal embedding can be derived in closed form by taking a weighted average of the unimodal features. In order to capture richer representations, our second baseline extends the first by factorizing into unimodal, bimodal, and trimodal factors, while retaining simplicity and efficiency during learning and inference. From a set of experiments across two tasks, we show strong performance on both supervised and semi-supervised multimodal prediction, as well as significant (10 times) speedups over neural models during inference. Overall, we believe that our strong baseline models offer new benchmarking options for future research in multimodal learning.

pdf bib
Learning Representations from Imperfect Time Series Data via Tensor Rank Regularization
Paul Pu Liang | Zhun Liu | Yao-Hung Hubert Tsai | Qibin Zhao | Ruslan Salakhutdinov | Louis-Philippe Morency
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

There has been an increased interest in multimodal language processing including multimodal dialog, question answering, sentiment analysis, and speech recognition. However, naturally occurring multimodal data is often imperfect as a result of imperfect modalities, missing entries or noise corruption. To address these concerns, we present a regularization method based on tensor rank minimization. Our method is based on the observation that high-dimensional multimodal time series data often exhibit correlations across time and modalities which leads to low-rank tensor representations. However, the presence of noise or incomplete values breaks these correlations and results in tensor representations of higher rank. We design a model to learn such tensor representations and effectively regularize their rank. Experiments on multimodal language data show that our model achieves good results across various levels of imperfection.

pdf bib
Multimodal Transformer for Unaligned Multimodal Language Sequences
Yao-Hung Hubert Tsai | Shaojie Bai | Paul Pu Liang | J. Zico Kolter | Louis-Philippe Morency | Ruslan Salakhutdinov
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Human language is often multimodal, which comprehends a mixture of natural language, facial gestures, and acoustic behaviors. However, two major challenges in modeling such multimodal human language time-series data exist: 1) inherent data non-alignment due to variable sampling rates for the sequences from each modality; and 2) long-range dependencies between elements across modalities. In this paper, we introduce the Multimodal Transformer (MulT) to generically address the above issues in an end-to-end manner without explicitly aligning the data. At the heart of our model is the directional pairwise crossmodal attention, which attends to interactions between multimodal sequences across distinct time steps and latently adapt streams from one modality to another. Comprehensive experiments on both aligned and non-aligned multimodal time-series show that our model outperforms state-of-the-art methods by a large margin. In addition, empirical analysis suggests that correlated crossmodal signals are able to be captured by the proposed crossmodal attention mechanism in MulT.