2024
pdf
bib
abs
Fine-tuning after Prompting: an Explainable Way for Classification
Zezhong Wang
|
Luyao Ye
|
Hongru Wang
|
Boyang Xue
|
Yiming Du
|
Bin Liang
|
Kam-Fai Wong
Proceedings of the 10th SIGHAN Workshop on Chinese Language Processing (SIGHAN-10)
Prompting is an alternative approach for utilizing pre-trained language models (PLMs) in classification tasks. In contrast to fine-tuning, prompting is more understandable for humans because it utilizes natural language to interact with the PLM, but it often falls short in terms of accuracy. While current research primarily focuses on enhancing the performance of prompting methods to compete with fine-tuning, we believe that these two approaches are not mutually exclusive, each having its strengths and weaknesses. In our study, we depart from the competitive view of prompting versus fine-tuning and instead combine them, introducing a novel method called F&P. This approach enables us to harness the advantages of Fine-tuning for accuracy and the explainability of Prompting simultaneously. Specifically, we reformulate the sample into a prompt and subsequently fine-tune a linear classifier on top of the PLM. Following this, we extract verbalizers according to the weight of this classifier. During the inference phase, we reformulate the sample in the same way and query the PLM. The PLM generates a word, which is then subject to a dictionary lookup by the verbalizer to obtain the prediction. Experiments show that keeping only 30 keywords for each class can achieve comparable performance as fine-tuning. On the other hand, both the prompt and verbalizers are constructed in natural language, making them fully understandable to humans. Hence, the F&P method offers an effective and transparent way to employ a PLM for classification tasks.
pdf
bib
abs
PerLTQA: A Personal Long-Term Memory Dataset for Memory Classification, Retrieval, and Fusion in Question Answering
Yiming Du
|
Hongru Wang
|
Zhengyi Zhao
|
Bin Liang
|
Baojun Wang
|
Wanjun Zhong
|
Zezhong Wang
|
Kam-Fai Wong
Proceedings of the 10th SIGHAN Workshop on Chinese Language Processing (SIGHAN-10)
In conversational AI, effectively employing long-term memory improves personalized and consistent response generation. Existing work only concentrated on a single type of long-term memory, such as preferences, dialogue history, or social relationships, overlooking their interaction in real-world contexts. To this end, inspired by the concept of semantic memory and episodic memory from cognitive psychology, we create a new and more comprehensive Chinese dataset, coined as PerLTQA, in which world knowledge, profiles, social relationships, events, and dialogues are considered to leverage the interaction between different types of long-term memory for question answering (QA) in conversation. Further, based on PerLTQA, we propose a novel framework for memory integration in QA, consisting of three subtasks: Memory Classification, Memory Retrieval, and Memory Fusion, which provides a comprehensive paradigm for memory modeling, enabling consistent and personalized memory utilization. This essentially allows the exploitation of more accurate memory information for better responses in QA. We evaluate this framework using five LLMs and three retrievers. Experimental results demonstrate the importance of personal long-term memory in the QA task
2023
pdf
bib
abs
UniTRec: A Unified Text-to-Text Transformer and Joint Contrastive Learning Framework for Text-based Recommendation
Zhiming Mao
|
Huimin Wang
|
Yiming Du
|
Kam-Fai Wong
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
Prior study has shown that pretrained language models (PLM) can boost the performance of text-based recommendation. In contrast to previous works that either use PLM to encode user history as a whole input text, or impose an additional aggregation network to fuse multi-turn history representations, we propose a unified local- and global-attention Transformer encoder to better model two-level contexts of user history. Moreover, conditioned on user history encoded by Transformer encoders, our framework leverages Transformer decoders to estimate the language perplexity of candidate text items, which can serve as a straightforward yet significant contrastive signal for user-item text matching. Based on this, our framework, UniTRec, unifies the contrastive objectives of discriminative matching scores and candidate text perplexity to jointly enhance text-based recommendation. Extensive evaluation shows that UniTRec delivers SOTA performance on three text-based recommendation tasks.