Yishu Miao


2022

pdf bib
Contrastive Video-Language Learning with Fine-grained Frame Sampling
Zixu Wang | Yujie Zhong | Yishu Miao | Lin Ma | Lucia Specia
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Despite recent progress in video and language representation learning, the weak or sparse correspondence between the two modalities remains a bottleneck in the area. Most video-language models are trained via pair-level loss to predict whether a pair of video and text is aligned. However, even in paired video-text segments, only a subset of the frames are semantically relevant to the corresponding text, with the remainder representing noise; where the ratio of noisy frames is higher for longer videos. We propose FineCo (Fine-grained Contrastive Loss for Frame Sampling), an approach to better learn video and language representations with a fine-grained contrastive objective operating on video frames. It helps distil a video by selecting the frames that are semantically equivalent to the text, improving cross-modal correspondence. Building on the well established VideoCLIP model as a starting point, FineCo achieves state-of-the-art performance on YouCookII, a text-video retrieval benchmark with long videos. FineCo also achieves competitive results on text-video retrieval (MSR-VTT), and video question answering datasets (MSR-VTT QA and MSR-VTT MC) with shorter videos.

pdf bib
Guiding Visual Question Generation
Nihir Vedd | Zixu Wang | Marek Rei | Yishu Miao | Lucia Specia
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

In traditional Visual Question Generation (VQG), most images have multiple concepts (e.g. objects and categories) for which a question could be generated, but models are trained to mimic an arbitrary choice of concept as given in their training data. This makes training difficult and also poses issues for evaluation – multiple valid questions exist for most images but only one or a few are captured by the human references. We present Guiding Visual Question Generation - a variant of VQG which conditions the question generator on categorical information based on expectations on the type of question and the objects it should explore. We propose two variant families: (i) an explicitly guided model that enables an actor (human or automated) to select which objects and categories to generate a question for; and (ii) 2 types of implicitly guided models that learn which objects and categories to condition on, based on discrete variables. The proposed models are evaluated on an answer-category augmented VQA dataset and our quantitative results show a substantial improvement over the current state of the art (over 9 BLEU-4 increase). Human evaluation validates that guidance helps the generation of questions that are grammatically coherent and relevant to the given image and objects.

2021

pdf bib
Exploiting Multimodal Reinforcement Learning for Simultaneous Machine Translation
Julia Ive | Andy Mingren Li | Yishu Miao | Ozan Caglayan | Pranava Madhyastha | Lucia Specia
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

This paper addresses the problem of simultaneous machine translation (SiMT) by exploring two main concepts: (a) adaptive policies to learn a good trade-off between high translation quality and low latency; and (b) visual information to support this process by providing additional (visual) contextual information which may be available before the textual input is produced. For that, we propose a multimodal approach to simultaneous machine translation using reinforcement learning, with strategies to integrate visual and textual information in both the agent and the environment. We provide an exploration on how different types of visual information and integration strategies affect the quality and latency of simultaneous translation models, and demonstrate that visual cues lead to higher quality while keeping the latency low.

pdf bib
A Generative Framework for Simultaneous Machine Translation
Yishu Miao | Phil Blunsom | Lucia Specia
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

We propose a generative framework for simultaneous machine translation. Conventional approaches use a fixed number of source words to translate or learn dynamic policies for the number of source words by reinforcement learning. Here we formulate simultaneous translation as a structural sequence-to-sequence learning problem. A latent variable is introduced to model read or translate actions at every time step, which is then integrated out to consider all the possible translation policies. A re-parameterised Poisson prior is used to regularise the policies which allows the model to explicitly balance translation quality and latency. The experiments demonstrate the effectiveness and robustness of the generative framework, which achieves the best BLEU scores given different average translation latencies on benchmark datasets.

pdf bib
Discovering Topics in Long-tailed Corpora with Causal Intervention
Xiaobao Wu | Chunping Li | Yishu Miao
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

2020

pdf bib
Short Text Topic Modeling with Topic Distribution Quantization and Negative Sampling Decoder
Xiaobao Wu | Chunping Li | Yan Zhu | Yishu Miao
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Topic models have been prevailing for many years on discovering latent semantics while modeling long documents. However, for short texts they generally suffer from data sparsity because of extremely limited word co-occurrences; thus tend to yield repetitive or trivial topics with low quality. In this paper, to address this issue, we propose a novel neural topic model in the framework of autoencoding with a new topic distribution quantization approach generating peakier distributions that are more appropriate for modeling short texts. Besides the encoding, to tackle this issue in terms of decoding, we further propose a novel negative sampling decoder learning from negative samples to avoid yielding repetitive topics. We observe that our model can highly improve short text topic modeling performance. Through extensive experiments on real-world datasets, we demonstrate our model can outperform both strong traditional and neural baselines under extreme data sparsity scenes, producing high-quality topics.

2016

pdf bib
Language as a Latent Variable: Discrete Generative Models for Sentence Compression
Yishu Miao | Phil Blunsom
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing