2023
pdf
bib
abs
Modality Adaption or Regularization? A Case Study on End-to-End Speech Translation
Yuchen Han
|
Chen Xu
|
Tong Xiao
|
Jingbo Zhu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
Pre-training and fine-tuning is a paradigm for alleviating the data scarcity problem in end-to-end speech translation (E2E ST). The commonplace ”modality gap” between speech and text data often leads to inconsistent inputs between pre-training and fine-tuning. However, we observe that this gap occurs in the early stages of fine-tuning, but does not have a major impact on the final performance. On the other hand, we find that there has another gap, which we call the ”capacity gap”: high resource tasks (such as ASR and MT) always require a large model to fit, when the model is reused for a low resource task (E2E ST), it will get a sub-optimal performance due to the over-fitting. In a case study, we find that the regularization plays a more important role than the well-designed modality adaption method, which achieves 29.0 for en-de and 40.3 for en-fr on the MuST-C dataset.
pdf
bib
abs
The NiuTrans End-to-End Speech Translation System for IWSLT23 English-to-Chinese Offline Task
Yuchen Han
|
Xiaoqian Liu
|
Hao Chen
|
Yuhao Zhang
|
Chen Xu
|
Tong Xiao
|
Jingbo Zhu
Proceedings of the 20th International Conference on Spoken Language Translation (IWSLT 2023)
This paper describes the NiuTrans end-to-end speech translation system submitted for the IWSLT 2023 English-to-Chinese offline task. Our speech translation models are composed of pre-trained ASR and MT models under the SATE framework. Several pre-trained models with diverse architectures and input representations (e.g., log Mel-filterbank and waveform) were utilized. We proposed an IDA method to iteratively improve the performance of the MT models and generate the pseudo ST data through MT systems. We then trained ST models with different structures and data settings to enhance ensemble performance. Experimental results demonstrate that our NiuTrans system achieved a BLEU score of 29.22 on the MuST-C En-Zh tst-COMMON set, outperforming the previous year’s submission by 0.12 BLEU despite using less MT training data.
2022
pdf
bib
abs
The NiuTrans Machine Translation Systems for WMT22
Weiqiao Shan
|
Zhiquan Cao
|
Yuchen Han
|
Siming Wu
|
Yimin Hu
|
Jie Wang
|
Yi Zhang
|
Hou Baoyu
|
Hang Cao
|
Chenghao Gao
|
Xiaowen Liu
|
Tong Xiao
|
Anxiang Ma
|
Jingbo Zhu
Proceedings of the Seventh Conference on Machine Translation (WMT)
This paper describes the NiuTrans neural machine translation systems of the WMT22 General MT constrained task. We participate in four directions, including Chinese→English, English→Croatian, and Livonian↔English. Our models are based on several advanced Transformer variants, e.g., Transformer-ODE, Universal Multiscale Transformer (UMST). The main workflow consists of data filtering, large-scale data augmentation (i.e., iterative back-translation, iterative knowledge distillation), and specific-domain fine-tuning. Moreover, we try several multi-domain methods, such as a multi-domain model structure and a multi-domain data clustering method, to rise to this year’s newly proposed multi-domain test set challenge. For low-resource scenarios, we build a multi-language translation model to enhance the performance, and try to use the pre-trained language model (mBERT) to initialize the translation model.