Yunyi Zhang


2024

pdf bib
Taxonomy-guided Semantic Indexing for Academic Paper Search
SeongKu Kang | Yunyi Zhang | Pengcheng Jiang | Dongha Lee | Jiawei Han | Hwanjo Yu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Academic paper search is an essential task for efficient literature discovery and scientific advancement. While dense retrieval has advanced various ad-hoc searches, it often struggles to match the underlying academic concepts between queries and documents, which is critical for paper search. To enable effective academic concept matching for paper search, we propose Taxonomy-guided Semantic Indexing (TaxoIndex) framework. TaxoIndex extracts key concepts from papers and organizes them as a semantic index guided by an academic taxonomy, and then leverages this index as foundational knowledge to identify academic concepts and link queries and documents. As a plug-and-play framework, TaxoIndex can be flexibly employed to enhance existing dense retrievers. Extensive experiments show that TaxoIndex brings significant improvements, even with highly limited training data, and greatly enhances interpretability.

2023

pdf bib
PIEClass: Weakly-Supervised Text Classification with Prompting and Noise-Robust Iterative Ensemble Training
Yunyi Zhang | Minhao Jiang | Yu Meng | Yu Zhang | Jiawei Han
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Weakly-supervised text classification trains a classifier using the label name of each target class as the only supervision, which largely reduces human annotation efforts. Most existing methods first use the label names as static keyword-based features to generate pseudo labels, which are then used for final classifier training. While reasonable, such a commonly adopted framework suffers from two limitations: (1) keywords can have different meanings in different contexts and some text may not have any keyword, so keyword matching can induce noisy and inadequate pseudo labels; (2) the errors made in the pseudo label generation stage will directly propagate to the classifier training stage without a chance of being corrected. In this paper, we propose a new method, PIEClass, consisting of two modules: (1) a pseudo label acquisition module that uses zero-shot prompting of pre-trained language models (PLM) to get pseudo labels based on contextualized text understanding beyond static keyword matching, and (2) a noise-robust iterative ensemble training module that iteratively trains classifiers and updates pseudo labels by utilizing two PLM fine-tuning methods that regularize each other. Extensive experiments show that PIEClass achieves overall better performance than existing strong baselines on seven benchmark datasets and even achieves similar performance to fully-supervised classifiers on sentiment classification tasks.

2021

pdf bib
Corpus-based Open-Domain Event Type Induction
Jiaming Shen | Yunyi Zhang | Heng Ji | Jiawei Han
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Traditional event extraction methods require predefined event types and their corresponding annotations to learn event extractors. These prerequisites are often hard to be satisfied in real-world applications. This work presents a corpus-based open-domain event type induction method that automatically discovers a set of event types from a given corpus. As events of the same type could be expressed in multiple ways, we propose to represent each event type as a cluster of <predicate sense, object head> pairs. Specifically, our method (1) selects salient predicates and object heads, (2) disambiguates predicate senses using only a verb sense dictionary, and (3) obtains event types by jointly embedding and clustering <predicate sense, object head> pairs in a latent spherical space. Our experiments, on three datasets from different domains, show our method can discover salient and high-quality event types, according to both automatic and human evaluations.

pdf bib
Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training
Yu Meng | Yunyi Zhang | Jiaxin Huang | Xuan Wang | Yu Zhang | Heng Ji | Jiawei Han
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

We study the problem of training named entity recognition (NER) models using only distantly-labeled data, which can be automatically obtained by matching entity mentions in the raw text with entity types in a knowledge base. The biggest challenge of distantly-supervised NER is that the distant supervision may induce incomplete and noisy labels, rendering the straightforward application of supervised learning ineffective. In this paper, we propose (1) a noise-robust learning scheme comprised of a new loss function and a noisy label removal step, for training NER models on distantly-labeled data, and (2) a self-training method that uses contextualized augmentations created by pre-trained language models to improve the generalization ability of the NER model. On three benchmark datasets, our method achieves superior performance, outperforming existing distantly-supervised NER models by significant margins.

pdf bib
Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup
Luyu Gao | Yunyi Zhang | Jiawei Han | Jamie Callan
Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021)

Contrastive learning has been applied successfully to learn vector representations of text. Previous research demonstrated that learning high-quality representations benefits from batch-wise contrastive loss with a large number of negatives. In practice, the technique of in-batch negative is used, where for each example in a batch, other batch examples’ positives will be taken as its negatives, avoiding encoding extra negatives. This, however, still conditions each example’s loss on all batch examples and requires fitting the entire large batch into GPU memory. This paper introduces a gradient caching technique that decouples backpropagation between contrastive loss and the encoder, removing encoder backward pass data dependency along the batch dimension. As a result, gradients can be computed for one subset of the batch at a time, leading to almost constant memory usage.

2020

pdf bib
Empower Entity Set Expansion via Language Model Probing
Yunyi Zhang | Jiaming Shen | Jingbo Shang | Jiawei Han
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Entity set expansion, aiming at expanding a small seed entity set with new entities belonging to the same semantic class, is a critical task that benefits many downstream NLP and IR applications, such as question answering, query understanding, and taxonomy construction. Existing set expansion methods bootstrap the seed entity set by adaptively selecting context features and extracting new entities. A key challenge for entity set expansion is to avoid selecting ambiguous context features which will shift the class semantics and lead to accumulative errors in later iterations. In this study, we propose a novel iterative set expansion framework that leverages automatically generated class names to address the semantic drift issue. In each iteration, we select one positive and several negative class names by probing a pre-trained language model, and further score each candidate entity based on selected class names. Experiments on two datasets show that our framework generates high-quality class names and outperforms previous state-of-the-art methods significantly.

pdf bib
Text Classification Using Label Names Only: A Language Model Self-Training Approach
Yu Meng | Yunyi Zhang | Jiaxin Huang | Chenyan Xiong | Heng Ji | Chao Zhang | Jiawei Han
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Current text classification methods typically require a good number of human-labeled documents as training data, which can be costly and difficult to obtain in real applications. Humans can perform classification without seeing any labeled examples but only based on a small set of words describing the categories to be classified. In this paper, we explore the potential of only using the label name of each class to train classification models on unlabeled data, without using any labeled documents. We use pre-trained neural language models both as general linguistic knowledge sources for category understanding and as representation learning models for document classification. Our method (1) associates semantically related words with the label names, (2) finds category-indicative words and trains the model to predict their implied categories, and (3) generalizes the model via self-training. We show that our model achieves around 90% accuracy on four benchmark datasets including topic and sentiment classification without using any labeled documents but learning from unlabeled data supervised by at most 3 words (1 in most cases) per class as the label name.