Yuqi Zhou


2024

pdf bib
Cocktail: A Comprehensive Information Retrieval Benchmark with LLM-Generated Documents Integration
Sunhao Dai | Weihao Liu | Yuqi Zhou | Liang Pang | Rongju Ruan | Gang Wang | Zhenhua Dong | Jun Xu | Ji-Rong Wen
Findings of the Association for Computational Linguistics: ACL 2024

The proliferation of Large Language Models (LLMs) has led to an influx of AI-generated content (AIGC) on the internet, transforming the corpus of Information Retrieval (IR) systems from solely human-written to a coexistence with LLM-generated content. The impact of this surge in AIGC on IR systems remains an open question, with the primary challenge being the lack of a dedicated benchmark for researchers. In this paper, we introduce Cocktail, a comprehensive benchmark tailored for evaluating IR models in this mixed-sourced data landscape of the LLM era. Cocktail consists of 16 diverse datasets with mixed human-written and LLM-generated corpora across various text retrieval tasks and domains. Additionally, to avoid the potential bias from previously included dataset information in LLMs, we also introduce an up-to-date dataset, named NQ-UTD, with queries derived from recent events. Through conducting over 1,000 experiments to assess state-of-the-art retrieval models against the benchmarked datasets in Cocktail, we uncover a clear trade-off between ranking performance and source bias in neural retrieval models, highlighting the necessity for a balanced approach in designing future IR systems. We hope Cocktail can serve as a foundational resource for IR research in the LLM era, with all data and code publicly available at https://github.com/KID-22/Cocktail.

pdf bib
Virtual Context Enhancing Jailbreak Attacks with Special Token Injection
Yuqi Zhou | Lin Lu | Ryan Sun | Pan Zhou | Lichao Sun
Findings of the Association for Computational Linguistics: EMNLP 2024

Jailbreak attacks on large language models (LLMs) involve inducing these models to generate harmful content that violates ethics or laws, posing a significant threat to LLM security. Current jailbreak attacks face two main challenges: low success rates due to defensive measures and high resource requirements for crafting specific prompts. This paper introduces Virtual Context, which leverages special tokens, previously overlooked in LLM security, to improve jailbreak attacks. Virtual Context addresses these challenges by significantly increasing the success rates of existing jailbreak methods and requiring minimal background knowledge about the target model, thus enhancing effectiveness in black-box settings without additional overhead. Comprehensive evaluations show that Virtual Context-assisted jailbreak attacks can improve the success rates of four widely used jailbreak methods by approximately 40% across various LLMs. Additionally, applying Virtual Context to original malicious behaviors still achieves a notable jailbreak effect. In summary, our research highlights the potential of special tokens in jailbreak attacks and recommends including this threat in red-teaming testing to comprehensively enhance LLM security.