2025
pdf
bib
abs
Integrating Visual Modalities with Large Language Models for Mental Health Support
Zhouan Zhu
|
Shangfei Wang
|
Yuxin Wang
|
Jiaqiang Wu
Proceedings of the 31st International Conference on Computational Linguistics
Current work of mental health support primarily utilizes unimodal textual data and often fails to understand and respond to users’ emotional states comprehensively. In this study, we introduce a novel framework that enhances Large Language Model (LLM) performance in mental health dialogue systems by integrating multimodal inputs. Our framework uses visual language models to analyze facial expressions and body movements, then combines these visual elements with dialogue context and counseling strategies. This approach allows LLMs to generate more nuanced and supportive responses. The framework comprises four components: in-context learning via computation of semantic similarity; extraction of facial expression descriptions through visual modality data; integration of external knowledge from a knowledge base; and delivery of strategic guidance through a strategy selection module. Both automatic and human evaluations confirm that our approach outperforms existing models, delivering more empathetic, coherent, and contextually relevant mental health support responses.
pdf
bib
abs
CFSP: An Efficient Structured Pruning Framework for LLMs with Coarse-to-Fine Activation Information
Yuxin Wang
|
MingHua Ma
|
Zekun Wang
|
Jingchang Chen
|
Shan Liping
|
Qing Yang
|
Dongliang Xu
|
Ming Liu
|
Bing Qin
Proceedings of the 31st International Conference on Computational Linguistics
The colossal parameters and computational overhead of Large Language Models (LLMs) challenge their real-world applications. Network pruning, which targets unstructured or structured sparsity by removing redundant parameters, has recently been explored for LLM acceleration. Existing LLM pruning works focus on unstructured pruning, which typically requires special hardware support for a practical speed-up. In contrast, structured pruning can reduce latency on general devices. However, it remains a challenge to perform structured pruning efficiently and maintain performance, especially at high sparsity ratios. To this end, we introduce an efficient structured pruning framework named CFSP, which leverages both Coarse (interblock) and Fine-grained (intrablock) activation information as an importance criterion to guide pruning. The pruning is highly efficient, as it only requires one forward pass to compute feature activations. Specifically, we first allocate the sparsity budget across blocks based on their importance and then retain important weights within each block. In addition, we introduce a recovery fine-tuning strategy that adaptively allocates training overhead based on coarse-grained importance to further improve performance. Experimental results demonstrate that CFSP outperforms existing methods on diverse models across various sparsity budgets. Our code will be available at https://github.com/wyxscir/CFSP.
pdf
bib
abs
IntelliChain Stars at the Regulations Challenge Task: A Large Language Model for Financial Regulation
Shijia Jiang
|
Yongfu Dai
|
Haochen Jia
|
Yuxin Wang
|
Hao Wang
Proceedings of the Joint Workshop of the 9th Financial Technology and Natural Language Processing (FinNLP), the 6th Financial Narrative Processing (FNP), and the 1st Workshop on Large Language Models for Finance and Legal (LLMFinLegal)
We present our approach to the COLING-2025 Regulations Challenge, which evaluates large language models (LLMs) on nine regulatory tasks, such as abbreviation recognition and financial data extraction. To address challenges like domain-specific terminologies and dynamic regulatory contexts, we developed a robust data construction pipeline, integrating proprietary Chinese regulatory data, Fin-GPT datasets, and financial Q&A data. The pipeline applied, but was not limited to, language filtering, semantic screening, and deduplication, resulting in a 30,000-example dataset combining financial regulations and general financial data. Using this dataset, we fine-tuned Llama 3.2-3B-Instruct to create Reg-LLaMA, a specialized model that outperformed baselines on the Regulations Challenge and PIXIU datasets. These results demonstrate the effectiveness of domain-specific data construction in advancing LLMs for regulatory tasks, paving the way for reliable and interpretable AI in regulated industries.
2024
pdf
bib
abs
MentalManip: A Dataset For Fine-grained Analysis of Mental Manipulation in Conversations
Yuxin Wang
|
Ivory Yang
|
Saeed Hassanpour
|
Soroush Vosoughi
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Mental manipulation, a significant form of abuse in interpersonal conversations, presents a challenge to identify due to its context-dependent and often subtle nature. The detection of manipulative language is essential for protecting potential victims, yet the field of Natural Language Processing (NLP) currently faces a scarcity of resources and research on this topic. Our study addresses this gap by introducing a new dataset, named MentalManip, which consists of 4,000 annotated fictional dialogues. This dataset enables a comprehensive analysis of mental manipulation, pinpointing both the techniques utilized for manipulation and the vulnerabilities targeted in victims. Our research further explores the effectiveness of leading-edge models in recognizing manipulative dialogue and its components through a series of experiments with various configurations. The results demonstrate that these models inadequately identify and categorize manipulative content. Attempts to improve their performance by fine-tuning with existing datasets on mental health and toxicity have not overcome these limitations. We anticipate that MentalManip will stimulate further research, leading to progress in both understanding and mitigating the impact of mental manipulation in conversations.
pdf
bib
abs
The Open-World Lottery Ticket Hypothesis for OOD Intent Classification
Yunhua Zhou
|
Pengyu Wang
|
Peiju Liu
|
Yuxin Wang
|
Xipeng Qiu
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Most existing methods of Out-of-Domain (OOD) intent classification rely on extensive auxiliary OOD corpora or specific training paradigms. However, they are underdeveloped in the underlying principle that the models should have differentiated confidence in In- and Out-of-domain intent. In this work, we shed light on the fundamental cause of model overconfidence on OOD and demonstrate that calibrated subnetworks can be uncovered by pruning the overparameterized model. Calibrated confidence provided by the subnetwork can better distinguish In- and Out-of-domain, which can be a benefit for almost all post hoc methods. In addition to bringing fundamental insights, we also extend the Lottery Ticket Hypothesis to open-world scenarios. We conduct extensive experiments on four real-world datasets to demonstrate our approach can establish consistent improvements compared with a suite of competitive baselines.