Yuyu Zhang
2024
GPT-Fathom: Benchmarking Large Language Models to Decipher the Evolutionary Path towards GPT-4 and Beyond
Shen Zheng
|
Yuyu Zhang
|
Yijie Zhu
|
Chenguang Xi
|
Pengyang Gao
|
Zhou Xun
|
Kevin Chang
Findings of the Association for Computational Linguistics: NAACL 2024
With the rapid advancement of large language models (LLMs), there is a pressing need for a comprehensive evaluation suite to assess their capabilities and limitations. Existing LLM leaderboards often reference scores reported in other papers without consistent settings and prompts, which may inadvertently encourage cherry-picking favored settings and prompts for better results. In this work, we introduce GPT-Fathom, an open-source and reproducible LLM evaluation suite built on top of OpenAI Evals. We systematically evaluate 10+ leading LLMs as well as OpenAI’s legacy models on 20+ curated benchmarks across 7 capability categories, all under aligned settings. Our retrospective study on OpenAI’s earlier models offers valuable insights into the evolutionary path from GPT-3 to GPT-4. Currently, the community is eager to know how GPT-3 progressively improves to GPT-4, including technical details like whether adding code data improves LLM’s reasoning capability, which aspects of LLM capability can be improved by SFT and RLHF, how much is the alignment tax, etc. Our analysis sheds light on many of these questions, aiming to improve the transparency of advanced LLMs.
2020
Question Directed Graph Attention Network for Numerical Reasoning over Text
Kunlong Chen
|
Weidi Xu
|
Xingyi Cheng
|
Zou Xiaochuan
|
Yuyu Zhang
|
Le Song
|
Taifeng Wang
|
Yuan Qi
|
Wei Chu
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)
Numerical reasoning over texts, such as addition, subtraction, sorting and counting, is a challenging machine reading comprehension task, since it requires both natural language understanding and arithmetic computation. To address this challenge, we propose a heterogeneous graph representation for the context of the passage and question needed for such reasoning, and design a question directed graph attention network to drive multi-step numerical reasoning over this context graph. Our model, which combines deep learning and graph reasoning, achieves remarkable results in benchmark datasets such as DROP.
2019
Language Modeling with Shared Grammar
Yuyu Zhang
|
Le Song
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
Sequential recurrent neural networks have achieved superior performance on language modeling, but overlook the structure information in natural language. Recent works on structure-aware models have shown promising results on language modeling. However, how to incorporate structure knowledge on corpus without syntactic annotations remains an open problem. In this work, we propose neural variational language model (NVLM), which enables the sharing of grammar knowledge among different corpora. Experimental results demonstrate the effectiveness of our framework on two popular benchmark datasets. With the help of shared grammar, our language model converges significantly faster to a lower perplexity on new training corpus.