Yuzhang Tian
2024
Vision Language Models for Spreadsheet Understanding: Challenges and Opportunities
Shiyu Xia
|
Junyu Xiong
|
Haoyu Dong
|
Jianbo Zhao
|
Yuzhang Tian
|
Mengyu Zhou
|
Yeye He
|
Shi Han
|
Dongmei Zhang
Proceedings of the 3rd Workshop on Advances in Language and Vision Research (ALVR)
This paper explores capabilities of Vision Language Models on spreadsheet comprehension. We propose three self-supervised challenges with corresponding evaluation metrics to comprehensively evaluate VLMs on Optical Character Recognition (OCR), spatial perception, and visual format recognition. Additionally, we utilize the spreadsheet table detection task to assess the overall performance of VLMs by integrating these challenges. To probe VLMs more finely, we propose three spreadsheet-to-image settings: column width adjustment, style change, and address augmentation. We propose variants of prompts to address the above tasks in different settings. Notably, to leverage the strengths of VLMs in understanding text rather than two-dimensional positioning, we propose to decode cell values on the four boundaries of the table in spreadsheet boundary detection. Our findings reveal that VLMs demonstrate promising OCR capabilities but produce unsatisfactory results due to cell omission and misalignment, and they notably exhibit insufficient spatial and format recognition skills, motivating future work to enhance VLMs’ spreadsheet data comprehension capabilities using our methods to generate extensive spreadsheet-image pairs in various settings.
Encoding Spreadsheets for Large Language Models
Haoyu Dong
|
Jianbo Zhao
|
Yuzhang Tian
|
Junyu Xiong
|
Mengyu Zhou
|
Yun Lin
|
José Cambronero
|
Yeye He
|
Shi Han
|
Dongmei Zhang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Spreadsheets are characterized by their extensive two-dimensional grids, flexible layouts, and varied formatting options, which pose significant challenges for large language models (LLMs). In response, we introduce SheetEncoder, pioneering an efficient encoding method designed to unleash and optimize LLMs’ powerful understanding and reasoning capability on spreadsheets. Initially, we propose a vanilla serialization approach that incorporates cell addresses, values, and formats. However, this approach was limited by LLMs’ token constraints, making it impractical for most applications. To tackle this challenge, three innovative modules are proposed to compress spreadsheets effectively: structural-anchor-based compression, inverse index translation, and data-format-aware aggregation. It significantly improves performance in spreadsheet table detection task, outperforming the vanilla approach by 25.6% in GPT4’s in-context learning setting. Moreover, fine-tuned LLM with SheetEncoder has an average compression ratio of 25×, but achieves a state-of-the-art 78.9% F1 score, surpassing the best existing models by 12.3%, demonstrating that SheetEncoder greatly boosts LLMs’s performance on spreadsheet data.