Language models are typically trained on large corpora of text in their default orthographic form. However, this is not the only option; representing data as streams of phonemes can offer unique advantages, from deeper insights into phonological language acquisition to improved performance on sound-based tasks. The challenge lies in evaluating the impact of phoneme-based training, as most benchmarks are also orthographic. To address this, we develop a pipeline to convert text datasets into a continuous stream of phonemes. We apply this pipeline to the 100-million-word pre-training dataset from the BabyLM challenge, as well as to standard language and grammatical benchmarks, enabling us to pre-train and evaluate a model using phonemic input representations. Our results show that while phoneme-based training slightly reduces performance on traditional language understanding tasks, it offers valuable analytical and practical benefits.
Curriculum Learning has been a popular strategy to improve the cognitive plausibility of Small-Scale Language Models (SSLMs) in the BabyLM Challenge. However, it has not led to considerable improvements over non-curriculum models. We assess whether theoretical linguistic acquisition theories can be used to specify more fine-grained curriculum learning strategies, creating age-ordered corpora of Child-Directed Speech for four typologically distant language families to implement SSLMs and acquisition-inspired curricula cross-lingually. Comparing the success of three objective curricula (Growing, Inwards & MMM) that precisely replicate the predictions of acquisition theories on a standard SSLM architecture, we find fine-grained acquisition-inspired curricula can outperform non-curriculum baselines and performance benefits of curricula strategies in SSLMs can be derived by specifying fine-grained language-specific curricula that precisely replicate language acquisition theories.
Language models strongly rely on frequency information because they maximize the likelihood of tokens during pre-training. As a consequence, language models tend to not generalize well to tokens that are seldom seen during training. Moreover, maximum likelihood training has been discovered to give rise to anisotropy: representations of tokens in a model tend to cluster tightly in a high-dimensional cone, rather than spreading out over their representational capacity.Our work introduces a method for quantifying the frequency bias of a language model by assessing sentence-level perplexity with respect to token-level frequency. We then present a method for reducing the frequency bias of a language model by inducing a syntactic prior over token representations during pre-training. Our Syntactic Smoothing method adjusts the maximum likelihood objective function to distribute the learning signal to syntactically similar tokens. This approach results in better performance on infrequent English tokens and a decrease in anisotropy. We empirically show that the degree of anisotropy in a model correlates with its frequency bias.