Zehui Lin


2021

pdf bib
Learning Language Specific Sub-network for Multilingual Machine Translation
Zehui Lin | Liwei Wu | Mingxuan Wang | Lei Li
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Multilingual neural machine translation aims at learning a single translation model for multiple languages. These jointly trained models often suffer from performance degradationon rich-resource language pairs. We attribute this degeneration to parameter interference. In this paper, we propose LaSS to jointly train a single unified multilingual MT model. LaSS learns Language Specific Sub-network (LaSS) for each language pair to counter parameter interference. Comprehensive experiments on IWSLT and WMT datasets with various Transformer architectures show that LaSS obtains gains on 36 language pairs by up to 1.2 BLEU. Besides, LaSS shows its strong generalization performance at easy adaptation to new language pairs and zero-shot translation. LaSS boosts zero-shot translation with an average of 8.3 BLEU on 30 language pairs. Codes and trained models are available at https://github.com/NLP-Playground/LaSS.

pdf bib
The Volctrans GLAT System: Non-autoregressive Translation Meets WMT21
Lihua Qian | Yi Zhou | Zaixiang Zheng | Yaoming Zhu | Zehui Lin | Jiangtao Feng | Shanbo Cheng | Lei Li | Mingxuan Wang | Hao Zhou
Proceedings of the Sixth Conference on Machine Translation

This paper describes the Volctrans’ submission to the WMT21 news translation shared task for German->English translation. We build a parallel (i.e., non-autoregressive) translation system using the Glancing Transformer, which enables fast and accurate parallel decoding in contrast to the currently prevailing autoregressive models. To the best of our knowledge, this is the first parallel translation system that can be scaled to such a practical scenario like WMT competition. More importantly, our parallel translation system achieves the best BLEU score (35.0) on German->English translation task, outperforming all strong autoregressive counterparts.

2020

pdf bib
Pre-training Multilingual Neural Machine Translation by Leveraging Alignment Information
Zehui Lin | Xiao Pan | Mingxuan Wang | Xipeng Qiu | Jiangtao Feng | Hao Zhou | Lei Li
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

We investigate the following question for machine translation (MT): can we develop a single universal MT model to serve as the common seed and obtain derivative and improved models on arbitrary language pairs? We propose mRASP, an approach to pre-train a universal multilingual neural machine translation model. Our key idea in mRASP is its novel technique of random aligned substitution, which brings words and phrases with similar meanings across multiple languages closer in the representation space. We pre-train a mRASP model on 32 language pairs jointly with only public datasets. The model is then fine-tuned on downstream language pairs to obtain specialized MT models. We carry out extensive experiments on 42 translation directions across a diverse settings, including low, medium, rich resource, and as well as transferring to exotic language pairs. Experimental results demonstrate that mRASP achieves significant performance improvement compared to directly training on those target pairs. It is the first time to verify that multiple lowresource language pairs can be utilized to improve rich resource MT. Surprisingly, mRASP is even able to improve the translation quality on exotic languages that never occur in the pretraining corpus. Code, data, and pre-trained models are available at https://github.com/linzehui/mRASP.

pdf bib
The Volctrans Machine Translation System for WMT20
Liwei Wu | Xiao Pan | Zehui Lin | Yaoming Zhu | Mingxuan Wang | Lei Li
Proceedings of the Fifth Conference on Machine Translation

This paper describes our submission systems for VolcTrans for WMT20 shared news translation task. We participated in 8 translation directions. Our basic systems are based on Transformer (CITATION), into which we also employed new architectures (bigger or deeper Transformers, dynamic convolution). The final systems include text pre-process, subword(a.k.a. BPE(CITATION)), baseline model training, iterative back-translation, model ensemble, knowledge distillation and multilingual pre-training.