Zhifeng Li
2021
Feature-level Incongruence Reduction for Multimodal Translation
Zhifeng Li
|
Yu Hong
|
Yuchen Pan
|
Jian Tang
|
Jianmin Yao
|
Guodong Zhou
Proceedings of the Second Workshop on Advances in Language and Vision Research
Caption translation aims to translate image annotations (captions for short). Recently, Multimodal Neural Machine Translation (MNMT) has been explored as the essential solution. Besides of linguistic features in captions, MNMT allows visual(image) features to be used. The integration of multimodal features reinforces the semantic representation and considerably improves translation performance. However, MNMT suffers from the incongruence between visual and linguistic features. To overcome the problem, we propose to extend MNMT architecture with a harmonization network, which harmonizes multimodal features(linguistic and visual features)by unidirectional modal space conversion. It enables multimodal translation to be carried out in a seemingly monomodal translation pipeline. We experiment on the golden Multi30k-16 and 17. Experimental results show that, compared to the baseline,the proposed method yields the improvements of 2.2% BLEU for the scenario of translating English captions into German (En→De) at best,7.6% for the case of English-to-French translation(En→Fr) and 1.5% for English-to-Czech(En→Cz). The utilization of harmonization network leads to the competitive performance to the-state-of-the-art.
Winnowing Knowledge for Multi-choice Question Answering
Yeqiu Li
|
Bowei Zou
|
Zhifeng Li
|
Ai Ti Aw
|
Yu Hong
|
Qiaoming Zhu
Findings of the Association for Computational Linguistics: EMNLP 2021
We tackle multi-choice question answering. Acquiring related commonsense knowledge to the question and options facilitates the recognition of the correct answer. However, the current reasoning models suffer from the noises in the retrieved knowledge. In this paper, we propose a novel encoding method which is able to conduct interception and soft filtering. This contributes to the harvesting and absorption of representative information with less interference from noises. We experiment on CommonsenseQA. Experimental results illustrate that our method yields substantial and consistent improvements compared to the strong Bert, RoBERTa and Albert-based baselines.
Search
Co-authors
- Yu Hong 2
- Yuchen Pan 1
- Jian Tang 1
- Jianmin Yao 1
- Guodong Zhou 1
- show all...