Zhihao Wen
2024
SIBO: A Simple Booster for Parameter-Efficient Fine-Tuning
Zhihao Wen
|
Jie Zhang
|
Yuan Fang
Findings of the Association for Computational Linguistics: ACL 2024
Fine-tuning all parameters of large language models (LLMs) necessitates substantial computational power and extended time. Latest advancements in parameter-efficient fine-tuning (PEFT) techniques, such as Adapter tuning and LoRA, allow for adjustments to only a minor fraction of the parameters of these LLMs. Concurrently, it has been noted that the issue of over-smoothing diminishes the effectiveness of these Transformer-based LLMs, resulting in suboptimal performances in downstream tasks. In this paper, we present SIBO, which is a SImple BOoster to enhance PEFT, by injecting an initial residual. SIBO is straightforward and readily extensible to a range of state-of-the-art PEFT techniques to alleviate over-smoothing and enhance performance. Extensive experiments on 22 benchmark datasets demonstrate that SIBO significantly enhances the performance of various strong baselines, achieving up to 15.7% and 23.5% improvement over existing PEFT methods on the arithmetic and commonsense reasoning tasks, respectively.
2023
MAPO: Boosting Large Language Model Performance with Model-Adaptive Prompt Optimization
Yuyan Chen
|
Zhihao Wen
|
Ge Fan
|
Zhengyu Chen
|
Wei Wu
|
Dayiheng Liu
|
Zhixu Li
|
Bang Liu
|
Yanghua Xiao
Findings of the Association for Computational Linguistics: EMNLP 2023
Prompt engineering, as an efficient and effective way to leverage Large Language Models (LLM), has drawn a lot of attention from the research community. The existing research primarily emphasizes the importance of adapting prompts to specific tasks, rather than specific LLMs. However, a good prompt is not solely defined by its wording, but also binds to the nature of the LLM in question. In this work, we first quantitatively demonstrate that different prompts should be adapted to different LLMs to enhance their capabilities across various downstream tasks in NLP. Then we novelly propose a model-adaptive prompt optimizer (MAPO) method that optimizes the original prompts for each specific LLM in downstream tasks. Extensive experiments indicate that the proposed method can effectively refine prompts for an LLM, leading to significant improvements over various downstream tasks.
Search
Co-authors
- Yuyan Chen 1
- Ge Fan 1
- Zhengyu Chen 1
- Wei Wu 1
- Dayiheng Liu 1
- show all...