Zhihui Xie
2024
VLFeedback: A Large-Scale AI Feedback Dataset for Large Vision-Language Models Alignment
Lei Li
|
Zhihui Xie
|
Mukai Li
|
Shunian Chen
|
Peiyi Wang
|
Liang Chen
|
Yazheng Yang
|
Benyou Wang
|
Lingpeng Kong
|
Qi Liu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
As large vision-language models (LVLMs) evolve rapidly, the demand for high-quality and diverse data to align these models becomes increasingly crucial. However, the creation of such data with human supervision proves costly and time-intensive. In this paper, we investigate the efficacy of AI feedback to scale supervision for aligning LVLMs. We introduce VLFeedback, the first large-scale vision-language feedback dataset, comprising over 82K multi-modal instructions and comprehensive rationales generated by off-the-shelf models without human annotations. To evaluate the effectiveness of AI feedback for vision-language alignment, we train Silkie, an LVLM fine-tuned via direct preference optimization on VLFeedback. Silkie showcases exceptional performance regarding helpfulness, visual faithfulness, and safety metrics. It outperforms its base model by 6.9% and 9.5% in perception and cognition tasks, reduces hallucination issues on MMHal-Bench, and exhibits enhanced resilience against red-teaming attacks. Furthermore, our analysis underscores the advantage of AI feedback, particularly in fostering preference diversity to deliver more comprehensive improvements. Our dataset, training code and models are available at https://vlf-silkie.github.io.
2022
Discovering Low-rank Subspaces for Language-agnostic Multilingual Representations
Zhihui Xie
|
Handong Zhao
|
Tong Yu
|
Shuai Li
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
Large pretrained multilingual language models (ML-LMs) have shown remarkable capabilities of zero-shot cross-lingual transfer, without direct cross-lingual supervision. While these results are promising, follow-up works found that, within the multilingual embedding spaces, there exists strong language identity information which hinders the expression of linguistic factors shared across languages. For semantic tasks like cross-lingual sentence retrieval, it is desired to remove such language identity signals to fully leverage semantic information. In this work, we provide a novel view of projecting away language-specific factors from a multilingual embedding space. Specifically, we discover that there exists a low-rank subspace that primarily encodes information irrelevant to semantics (e.g., syntactic information). To identify this subspace, we present a simple but effective unsupervised method based on singular value decomposition with multiple monolingual corpora as input. Once the subspace is found, we can directly project the original embeddings into the null space to boost language agnosticism without finetuning. We systematically evaluate our method on various tasks including the challenging language-agnostic QA retrieval task. Empirical results show that applying our method consistently leads to improvements over commonly used ML-LMs.
Search
Fix data
Co-authors
- Shunian Chen 1
- Liang Chen 1
- Lingpeng Kong 1
- Shuai Li 1
- Lei Li 1
- show all...