Zhongtao Liu


2024

pdf bib
LLMRefine: Pinpointing and Refining Large Language Models via Fine-Grained Actionable Feedback
Wenda Xu | Daniel Deutsch | Mara Finkelstein | Juraj Juraska | Biao Zhang | Zhongtao Liu | William Yang Wang | Lei Li | Markus Freitag
Findings of the Association for Computational Linguistics: NAACL 2024

Recent large language models (LLM) areleveraging human feedback to improve theirgeneration quality. However, human feedbackis costly to obtain, especially during inference.In this work, we propose LLMRefine, aninference time optimization method to refineLLM’s output. The core idea is to usea learned fine-grained feedback model topinpoint defects and guide LLM to refinethem iteratively. Using original LLM as aproposal of edits, LLMRefine searches fordefect-less text via simulated annealing, tradingoff the exploration and exploitation. Weconduct experiments on three text generationtasks, including machine translation, long-form question answering (QA), and topicalsummarization. LLMRefine consistentlyoutperforms all baseline approaches, achievingimprovements up to 1.7 MetricX points ontranslation tasks, 8.1 ROUGE-L on ASQA, 2.2ROUGE-L on topical summarization.

pdf bib
Beyond Human-Only: Evaluating Human-Machine Collaboration for Collecting High-Quality Translation Data
Zhongtao Liu | Parker Riley | Daniel Deutsch | Alison Lui | Mengmeng Niu | Apurva Shah | Markus Freitag
Proceedings of the Ninth Conference on Machine Translation

Collecting high-quality translations is crucial for the development and evaluation of machine translation systems. However, traditional human-only approaches are costly and slow. This study presents a comprehensive investigation of 11 approaches for acquiring translation data, including human-only, machine-only, and hybrid approaches. Our findings demonstrate that human-machine collaboration can match or even exceed the quality of human-only translations, while being more cost-efficient. Error analysis reveals the complementary strengths between human and machine contributions, highlighting the effectiveness of collaborative methods. Cost analysis further demonstrates the economic benefits of human-machine collaboration methods, with some approaches achieving top-tier quality at around 60% of the cost of traditional methods. We release a publicly available dataset containing nearly 18,000 segments of varying translation quality with corresponding human ratings to facilitate future research.