Zhongtao Miao
2024
Word Alignment as Preference for Machine Translation
Qiyu Wu
|
Masaaki Nagata
|
Zhongtao Miao
|
Yoshimasa Tsuruoka
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
The problem of hallucination and omission, a long-standing problem in machine translation (MT), is more pronounced when a large language model (LLM) is used in MT because an LLM itself is susceptible to these phenomena. In this work, we mitigate the problem in an LLM-based MT model by guiding it to better word alignment. We first study the correlation between word alignment and the phenomena of hallucination and omission in MT. Then we propose to utilize word alignment as preference to optimize the LLM-based MT model. The preference data are constructed by selecting chosen and rejected translations from multiple MT tools. Subsequently, direct preference optimization is used to optimize the LLM-based model towards the preference signal. Given the absence of evaluators specifically designed for hallucination and omission in MT, we further propose selecting hard instances and utilizing GPT-4 to directly evaluate the performance of the models in mitigating these issues. We verify the rationality of these designed evaluation methods by experiments, followed by extensive results demonstrating the effectiveness of word alignment-based preference optimization to mitigate hallucination and omission. On the other hand, although it shows promise in mitigating hallucination and omission, the overall performance of MT in different language directions remains mixed, with slight increases in BLEU and decreases in COMET.
Enhancing Cross-lingual Sentence Embedding for Low-resource Languages with Word Alignment
Zhongtao Miao
|
Qiyu Wu
|
Kaiyan Zhao
|
Zilong Wu
|
Yoshimasa Tsuruoka
Findings of the Association for Computational Linguistics: NAACL 2024
The field of cross-lingual sentence embeddings has recently experienced significant advancements, but research concerning low-resource languages has lagged due to the scarcity of parallel corpora. This paper shows that cross-lingual word representation in low-resource languages is notably under-aligned with that in high-resource languages in current models. To address this, we introduce a novel framework that explicitly aligns words between English and eight low-resource languages, utilizing off-the-shelf word alignment models. This framework incorporates three primary training objectives: aligned word prediction and word translation ranking, along with the widely used translation ranking. We evaluate our approach through experiments on the bitext retrieval task, which demonstrate substantial improvements on sentence embeddings in low-resource languages. In addition, the competitive performance of the proposed model across a broader range of tasks in high-resource languages underscores its practicality.