Zhou Xun
2024
World to Code: Multi-modal Data Generation via Self-Instructed Compositional Captioning and Filtering
Jiacong Wang
|
Bohong Wu
|
Haiyong Jiang
|
Zhou Xun
|
Xin Xiao
|
Haoyuan Guo
|
Jun Xiao
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Recent advances in Vision-Language Models (VLMs) and the scarcity of high-quality multi-modal alignment data have inspired numerous researches on synthetic VLM data generation. The conventional norm in VLM data construction uses a mixture of specialists in caption and OCR, or stronger VLM APIs and expensive human annotation.In this paper, we present World to Code (W2C), a meticulously curated multi-modal data construction pipeline that organizes the final generation output into a Python code format. The pipeline leverages the VLM itself to extract cross-modal information via different prompts and filter the generated outputs again via a consistency filtering strategy. Experiments have demonstrated the high quality of W2C by improving various existing visual question answering and visual grounding benchmarks across different VLMs. Further analysis also demonstrates that the new code parsing ability of VLMs presents better cross-modal equivalence than the commonly used detail caption ability. Our code is available at https://github.com/foundation-multimodal-models/World2Code.
GPT-Fathom: Benchmarking Large Language Models to Decipher the Evolutionary Path towards GPT-4 and Beyond
Shen Zheng
|
Yuyu Zhang
|
Yijie Zhu
|
Chenguang Xi
|
Pengyang Gao
|
Zhou Xun
|
Kevin Chang
Findings of the Association for Computational Linguistics: NAACL 2024
With the rapid advancement of large language models (LLMs), there is a pressing need for a comprehensive evaluation suite to assess their capabilities and limitations. Existing LLM leaderboards often reference scores reported in other papers without consistent settings and prompts, which may inadvertently encourage cherry-picking favored settings and prompts for better results. In this work, we introduce GPT-Fathom, an open-source and reproducible LLM evaluation suite built on top of OpenAI Evals. We systematically evaluate 10+ leading LLMs as well as OpenAI’s legacy models on 20+ curated benchmarks across 7 capability categories, all under aligned settings. Our retrospective study on OpenAI’s earlier models offers valuable insights into the evolutionary path from GPT-3 to GPT-4. Currently, the community is eager to know how GPT-3 progressively improves to GPT-4, including technical details like whether adding code data improves LLM’s reasoning capability, which aspects of LLM capability can be improved by SFT and RLHF, how much is the alignment tax, etc. Our analysis sheds light on many of these questions, aiming to improve the transparency of advanced LLMs.
Search
Fix data
Co-authors
- Kevin Chang 1
- Pengyang Gao 1
- Haoyuan Guo 1
- Haiyong Jiang 1
- Jiacong Wang 1
- show all...