Zifan Li


2019

pdf bib
CoSQL: A Conversational Text-to-SQL Challenge Towards Cross-Domain Natural Language Interfaces to Databases
Tao Yu | Rui Zhang | Heyang Er | Suyi Li | Eric Xue | Bo Pang | Xi Victoria Lin | Yi Chern Tan | Tianze Shi | Zihan Li | Youxuan Jiang | Michihiro Yasunaga | Sungrok Shim | Tao Chen | Alexander Fabbri | Zifan Li | Luyao Chen | Yuwen Zhang | Shreya Dixit | Vincent Zhang | Caiming Xiong | Richard Socher | Walter Lasecki | Dragomir Radev
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

We present CoSQL, a corpus for building cross-domain, general-purpose database (DB) querying dialogue systems. It consists of 30k+ turns plus 10k+ annotated SQL queries, obtained from a Wizard-of-Oz (WOZ) collection of 3k dialogues querying 200 complex DBs spanning 138 domains. Each dialogue simulates a real-world DB query scenario with a crowd worker as a user exploring the DB and a SQL expert retrieving answers with SQL, clarifying ambiguous questions, or otherwise informing of unanswerable questions. When user questions are answerable by SQL, the expert describes the SQL and execution results to the user, hence maintaining a natural interaction flow. CoSQL introduces new challenges compared to existing task-oriented dialogue datasets: (1) the dialogue states are grounded in SQL, a domain-independent executable representation, instead of domain-specific slot value pairs, and (2) because testing is done on unseen databases, success requires generalizing to new domains. CoSQL includes three tasks: SQL-grounded dialogue state tracking, response generation from query results, and user dialogue act prediction. We evaluate a set of strong baselines for each task and show that CoSQL presents significant challenges for future research. The dataset, baselines, and leaderboard will be released at https://yale-lily.github.io/cosql.

2018

pdf bib
SyntaxSQLNet: Syntax Tree Networks for Complex and Cross-Domain Text-to-SQL Task
Tao Yu | Michihiro Yasunaga | Kai Yang | Rui Zhang | Dongxu Wang | Zifan Li | Dragomir Radev
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Most existing studies in text-to-SQL tasks do not require generating complex SQL queries with multiple clauses or sub-queries, and generalizing to new, unseen databases. In this paper we propose SyntaxSQLNet, a syntax tree network to address the complex and cross-domain text-to-SQL generation task. SyntaxSQLNet employs a SQL specific syntax tree-based decoder with SQL generation path history and table-aware column attention encoders. We evaluate SyntaxSQLNet on a new large-scale text-to-SQL corpus containing databases with multiple tables and complex SQL queries containing multiple SQL clauses and nested queries. We use a database split setting where databases in the test set are unseen during training. Experimental results show that SyntaxSQLNet can handle a significantly greater number of complex SQL examples than prior work, outperforming the previous state-of-the-art model by 9.5% in exact matching accuracy. To our knowledge, we are the first to study this complex text-to-SQL task. Our task and models with the latest updates are available at https://yale-lily.github.io/seq2sql/spider.

pdf bib
Spider: A Large-Scale Human-Labeled Dataset for Complex and Cross-Domain Semantic Parsing and Text-to-SQL Task
Tao Yu | Rui Zhang | Kai Yang | Michihiro Yasunaga | Dongxu Wang | Zifan Li | James Ma | Irene Li | Qingning Yao | Shanelle Roman | Zilin Zhang | Dragomir Radev
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

We present Spider, a large-scale complex and cross-domain semantic parsing and text-to-SQL dataset annotated by 11 college students. It consists of 10,181 questions and 5,693 unique complex SQL queries on 200 databases with multiple tables covering 138 different domains. We define a new complex and cross-domain semantic parsing and text-to-SQL task so that different complicated SQL queries and databases appear in train and test sets. In this way, the task requires the model to generalize well to both new SQL queries and new database schemas. Therefore, Spider is distinct from most of the previous semantic parsing tasks because they all use a single database and have the exact same program in the train set and the test set. We experiment with various state-of-the-art models and the best model achieves only 9.7% exact matching accuracy on a database split setting. This shows that Spider presents a strong challenge for future research. Our dataset and task with the most recent updates are publicly available at https://yale-lily.github.io/seq2sql/spider.

pdf bib
TypeSQL: Knowledge-Based Type-Aware Neural Text-to-SQL Generation
Tao Yu | Zifan Li | Zilin Zhang | Rui Zhang | Dragomir Radev
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)

Interacting with relational databases through natural language helps users with any background easily query and analyze a vast amount of data. This requires a system that understands users’ questions and converts them to SQL queries automatically. In this paper, we present a novel approach TypeSQL which formats the problem as a slot filling task in a more reasonable way. In addition, TypeSQL utilizes type information to better understand rare entities and numbers in the questions. We experiment this idea on the WikiSQL dataset and outperform the prior art by 6% in much shorter time. We also show that accessing the content of databases can significantly improve the performance when users’ queries are not well-formed. TypeSQL can reach 82.6% accuracy, a 17.5% absolute improvement compared to the previous content-sensitive model.