2024
pdf
bib
abs
Do Large Language Models Discriminate in Hiring Decisions on the Basis of Race, Ethnicity, and Gender?
Haozhe An
|
Christabel Acquaye
|
Colin Wang
|
Zongxia Li
|
Rachel Rudinger
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
We examine whether large language models (LLMs) exhibit race- and gender-based name discrimination in hiring decisions, similar to classic findings in the social sciences (Bertrand and Mullainathan, 2004). We design a series of templatic prompts to LLMs to write an email to a named job applicant informing them of a hiring decision. By manipulating the applicant’s first name, we measure the effect of perceived race, ethnicity, and gender on the probability that the LLM generates an acceptance or rejection email. We find that the hiring decisions of LLMs in many settings are more likely to favor White applicants over Hispanic applicants. In aggregate, the groups with the highest and lowest acceptance rates respectively are masculine White names and masculine Hispanic names. However, the comparative acceptance rates by group vary under different templatic settings, suggesting that LLMs’ race- and gender-sensitivity may be idiosyncratic and prompt-sensitive.
pdf
bib
abs
Improving the TENOR of Labeling: Re-evaluating Topic Models for Content Analysis
Zongxia Li
|
Andrew Mao
|
Daniel Stephens
|
Pranav Goel
|
Emily Walpole
|
Alden Dima
|
Juan Fung
|
Jordan Boyd-Graber
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)
Topic models are a popular tool for understanding text collections, but their evaluation has been a point of contention. Automated evaluation metrics such as coherence are often used, however, their validity has been questioned for neural topic models (NTMs) and can overlook a model’s benefits in real-world applications. To this end, we conduct the first evaluation of neural, supervised and classical topic models in an interactive task-based setting. We combine topic models with a classifier and test their ability to help humans conduct content analysis and document annotation. From simulated, real user and expert pilot studies, the Contextual Neural Topic Model does the best on cluster evaluation metrics and human evaluations; however, LDA is competitive with two other NTMs under our simulated experiment and user study results, contrary to what coherence scores suggest. We show that current automated metrics do not provide a complete picture of topic modeling capabilities, but the right choice of NTMs can be better than classical models on practical tasks.
pdf
bib
abs
PEDANTS: Cheap but Effective and Interpretable Answer Equivalence
Zongxia Li
|
Ishani Mondal
|
Huy Nghiem
|
Yijun Liang
|
Jordan Lee Boyd-Graber
Findings of the Association for Computational Linguistics: EMNLP 2024
Question answering (QA) can only make progress if we know if an answer is correct, but current answer correctness (AC) metrics struggle with verbose, free-form answers from large language models (LLMs). There are two challenges with current short-form QA evaluations: a lack of diverse styles of evaluation data and an over-reliance on expensive and slow LLMs. LLM-based scorers correlate better with humans, but this expensive task has only been tested on limited QA datasets. We rectify these issues by providing rubrics and datasets for evaluating machine QA adopted from the Trivia community. We also propose an efficient, and interpretable QA evaluation that is more stable than an exact match and neural methods (BERTScore).
pdf
bib
abs
SciDoc2Diagrammer-MAF: Towards Generation of Scientific Diagrams from Documents guided by Multi-Aspect Feedback Refinement
Ishani Mondal
|
Zongxia Li
|
Yufang Hou
|
Anandhavelu Natarajan
|
Aparna Garimella
|
Jordan Lee Boyd-Graber
Findings of the Association for Computational Linguistics: EMNLP 2024
Automating the creation of scientific diagrams from academic papers can significantly streamline the development of tutorials, presentations, and posters, thereby saving time and accelerating the process. Current text-to-image models (Rombach et al., 2022a; Belouadi et al., 2023) struggle with generating accurate and visually appealing diagrams from long-context inputs. We propose SciDoc2Diagram, a task that extracts relevant information from scientific papers and generates diagrams, along with a benchmarking dataset, SciDoc2DiagramBench. We develop a multi-step pipeline SciDoc2Diagrammer that generates diagrams based on user intentions using intermediate code generation. We observed that initial diagram drafts were often incomplete or unfaithful to the source, leading us to develop SciDoc2Diagrammer-Multi-Aspect-Feedback (MAF), a refinement strategy that significantly enhances factual correctness and visual appeal and outperforms existing models on both automatic and human judgement.
2023
pdf
bib
abs
SODAPOP: Open-Ended Discovery of Social Biases in Social Commonsense Reasoning Models
Haozhe An
|
Zongxia Li
|
Jieyu Zhao
|
Rachel Rudinger
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics
A common limitation of diagnostic tests for detecting social biases in NLP models is that they may only detect stereotypic associations that are pre-specified by the designer of the test. Since enumerating all possible problematic associations is infeasible, it is likely these tests fail to detect biases that are present in a model but not pre-specified by the designer. To address this limitation, we propose SODAPOP (SOcial bias Discovery from Answers about PeOPle), an approach for automatic social bias discovery in social commonsense question-answering. The SODAPOP pipeline generates modified instances from the Social IQa dataset (Sap et al., 2019b) by (1) substituting names associated with different demographic groups, and (2) generating many distractor answers from a masked language model. By using a social commonsense model to score the generated distractors, we are able to uncover the model’s stereotypic associations between demographic groups and an open set of words. We also test SODAPOP on debiased models and show the limitations of multiple state-of-the-art debiasing algorithms.