Revisiting Locality Sensitive Hashing for Vocabulary Selection in Fast Neural Machine Translation
Hieu Hoang, Marcin Junczys-dowmunt, Roman Grundkiewicz, Huda Khayrallah
Correct Metadata for
Abstract
Neural machine translation models often contain large target vocabularies. The calculation of logits, softmax and beam search is computationally costly over so many classes. We investigate the use of locality sensitive hashing (LSH) to reduce the number of vocabulary items that must be evaluated and explore the relationship between the hashing algorithm, translation speed and quality. Compared to prior work, our LSH-based solution does not require additional augmentation via word-frequency lists or alignments. We propose a training procedure that produces models, which, when combined with our LSH inference algorithm increase translation speed by up to 87% over the baseline, while maintaining translation quality as measured by BLEU. Apart from just using BLEU, we focus on minimizing search errors compared to the full softmax, a much harsher quality criterion.- Anthology ID:
- 2022.wmt-1.79
- Volume:
- Proceedings of the Seventh Conference on Machine Translation (WMT)
- Month:
- December
- Year:
- 2022
- Address:
- Abu Dhabi, United Arab Emirates (Hybrid)
- Editors:
- Philipp Koehn, Loïc Barrault, Ondřej Bojar, Fethi Bougares, Rajen Chatterjee, Marta R. Costa-jussà, Christian Federmann, Mark Fishel, Alexander Fraser, Markus Freitag, Yvette Graham, Roman Grundkiewicz, Paco Guzman, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Tom Kocmi, André Martins, Makoto Morishita, Christof Monz, Masaaki Nagata, Toshiaki Nakazawa, Matteo Negri, Aurélie Névéol, Mariana Neves, Martin Popel, Marco Turchi, Marcos Zampieri
- Venue:
- WMT
- SIG:
- SIGMT
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 855–869
- Language:
- URL:
- https://aclanthology.org/2022.wmt-1.79/
- DOI:
- Bibkey:
- Cite (ACL):
- Hieu Hoang, Marcin Junczys-dowmunt, Roman Grundkiewicz, and Huda Khayrallah. 2022. Revisiting Locality Sensitive Hashing for Vocabulary Selection in Fast Neural Machine Translation. In Proceedings of the Seventh Conference on Machine Translation (WMT), pages 855–869, Abu Dhabi, United Arab Emirates (Hybrid). Association for Computational Linguistics.
- Cite (Informal):
- Revisiting Locality Sensitive Hashing for Vocabulary Selection in Fast Neural Machine Translation (Hoang et al., WMT 2022)
- Copy Citation:
- PDF:
- https://aclanthology.org/2022.wmt-1.79.pdf
Export citation
@inproceedings{hoang-etal-2022-revisiting,
title = "Revisiting Locality Sensitive Hashing for Vocabulary Selection in Fast Neural Machine Translation",
author = "Hoang, Hieu and
Junczys-dowmunt, Marcin and
Grundkiewicz, Roman and
Khayrallah, Huda",
editor = {Koehn, Philipp and
Barrault, Lo{\"i}c and
Bojar, Ond{\v{r}}ej and
Bougares, Fethi and
Chatterjee, Rajen and
Costa-juss{\`a}, Marta R. and
Federmann, Christian and
Fishel, Mark and
Fraser, Alexander and
Freitag, Markus and
Graham, Yvette and
Grundkiewicz, Roman and
Guzman, Paco and
Haddow, Barry and
Huck, Matthias and
Jimeno Yepes, Antonio and
Kocmi, Tom and
Martins, Andr{\'e} and
Morishita, Makoto and
Monz, Christof and
Nagata, Masaaki and
Nakazawa, Toshiaki and
Negri, Matteo and
N{\'e}v{\'e}ol, Aur{\'e}lie and
Neves, Mariana and
Popel, Martin and
Turchi, Marco and
Zampieri, Marcos},
booktitle = "Proceedings of the Seventh Conference on Machine Translation (WMT)",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates (Hybrid)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.wmt-1.79/",
pages = "855--869",
abstract = "Neural machine translation models often contain large target vocabularies. The calculation of logits, softmax and beam search is computationally costly over so many classes. We investigate the use of locality sensitive hashing (LSH) to reduce the number of vocabulary items that must be evaluated and explore the relationship between the hashing algorithm, translation speed and quality. Compared to prior work, our LSH-based solution does not require additional augmentation via word-frequency lists or alignments. We propose a training procedure that produces models, which, when combined with our LSH inference algorithm increase translation speed by up to 87{\%} over the baseline, while maintaining translation quality as measured by BLEU. Apart from just using BLEU, we focus on minimizing search errors compared to the full softmax, a much harsher quality criterion."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hoang-etal-2022-revisiting">
<titleInfo>
<title>Revisiting Locality Sensitive Hashing for Vocabulary Selection in Fast Neural Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hieu</namePart>
<namePart type="family">Hoang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcin</namePart>
<namePart type="family">Junczys-dowmunt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roman</namePart>
<namePart type="family">Grundkiewicz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Huda</namePart>
<namePart type="family">Khayrallah</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Seventh Conference on Machine Translation (WMT)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Koehn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Loïc</namePart>
<namePart type="family">Barrault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ondřej</namePart>
<namePart type="family">Bojar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fethi</namePart>
<namePart type="family">Bougares</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rajen</namePart>
<namePart type="family">Chatterjee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marta</namePart>
<namePart type="given">R</namePart>
<namePart type="family">Costa-jussà</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christian</namePart>
<namePart type="family">Federmann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mark</namePart>
<namePart type="family">Fishel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Fraser</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Markus</namePart>
<namePart type="family">Freitag</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yvette</namePart>
<namePart type="family">Graham</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roman</namePart>
<namePart type="family">Grundkiewicz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paco</namePart>
<namePart type="family">Guzman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barry</namePart>
<namePart type="family">Haddow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthias</namePart>
<namePart type="family">Huck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Antonio</namePart>
<namePart type="family">Jimeno Yepes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tom</namePart>
<namePart type="family">Kocmi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">André</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Makoto</namePart>
<namePart type="family">Morishita</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christof</namePart>
<namePart type="family">Monz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Masaaki</namePart>
<namePart type="family">Nagata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Toshiaki</namePart>
<namePart type="family">Nakazawa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matteo</namePart>
<namePart type="family">Negri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurélie</namePart>
<namePart type="family">Névéol</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mariana</namePart>
<namePart type="family">Neves</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Martin</namePart>
<namePart type="family">Popel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marco</namePart>
<namePart type="family">Turchi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates (Hybrid)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Neural machine translation models often contain large target vocabularies. The calculation of logits, softmax and beam search is computationally costly over so many classes. We investigate the use of locality sensitive hashing (LSH) to reduce the number of vocabulary items that must be evaluated and explore the relationship between the hashing algorithm, translation speed and quality. Compared to prior work, our LSH-based solution does not require additional augmentation via word-frequency lists or alignments. We propose a training procedure that produces models, which, when combined with our LSH inference algorithm increase translation speed by up to 87% over the baseline, while maintaining translation quality as measured by BLEU. Apart from just using BLEU, we focus on minimizing search errors compared to the full softmax, a much harsher quality criterion.</abstract>
<identifier type="citekey">hoang-etal-2022-revisiting</identifier>
<location>
<url>https://aclanthology.org/2022.wmt-1.79/</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>855</start>
<end>869</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings %T Revisiting Locality Sensitive Hashing for Vocabulary Selection in Fast Neural Machine Translation %A Hoang, Hieu %A Junczys-dowmunt, Marcin %A Grundkiewicz, Roman %A Khayrallah, Huda %Y Koehn, Philipp %Y Barrault, Loïc %Y Bojar, Ondřej %Y Bougares, Fethi %Y Chatterjee, Rajen %Y Costa-jussà, Marta R. %Y Federmann, Christian %Y Fishel, Mark %Y Fraser, Alexander %Y Freitag, Markus %Y Graham, Yvette %Y Grundkiewicz, Roman %Y Guzman, Paco %Y Haddow, Barry %Y Huck, Matthias %Y Jimeno Yepes, Antonio %Y Kocmi, Tom %Y Martins, André %Y Morishita, Makoto %Y Monz, Christof %Y Nagata, Masaaki %Y Nakazawa, Toshiaki %Y Negri, Matteo %Y Névéol, Aurélie %Y Neves, Mariana %Y Popel, Martin %Y Turchi, Marco %Y Zampieri, Marcos %S Proceedings of the Seventh Conference on Machine Translation (WMT) %D 2022 %8 December %I Association for Computational Linguistics %C Abu Dhabi, United Arab Emirates (Hybrid) %F hoang-etal-2022-revisiting %X Neural machine translation models often contain large target vocabularies. The calculation of logits, softmax and beam search is computationally costly over so many classes. We investigate the use of locality sensitive hashing (LSH) to reduce the number of vocabulary items that must be evaluated and explore the relationship between the hashing algorithm, translation speed and quality. Compared to prior work, our LSH-based solution does not require additional augmentation via word-frequency lists or alignments. We propose a training procedure that produces models, which, when combined with our LSH inference algorithm increase translation speed by up to 87% over the baseline, while maintaining translation quality as measured by BLEU. Apart from just using BLEU, we focus on minimizing search errors compared to the full softmax, a much harsher quality criterion. %U https://aclanthology.org/2022.wmt-1.79/ %P 855-869
Markdown (Informal)
[Revisiting Locality Sensitive Hashing for Vocabulary Selection in Fast Neural Machine Translation](https://aclanthology.org/2022.wmt-1.79/) (Hoang et al., WMT 2022)
- Revisiting Locality Sensitive Hashing for Vocabulary Selection in Fast Neural Machine Translation (Hoang et al., WMT 2022)
ACL
- Hieu Hoang, Marcin Junczys-dowmunt, Roman Grundkiewicz, and Huda Khayrallah. 2022. Revisiting Locality Sensitive Hashing for Vocabulary Selection in Fast Neural Machine Translation. In Proceedings of the Seventh Conference on Machine Translation (WMT), pages 855–869, Abu Dhabi, United Arab Emirates (Hybrid). Association for Computational Linguistics.