@inproceedings{dycke-etal-2023-nlpeer,
title = "{NLP}eer: A Unified Resource for the Computational Study of Peer Review",
author = "Dycke, Nils and
Kuznetsov, Ilia and
Gurevych, Iryna",
editor = "Rogers, Anna and
Boyd-Graber, Jordan and
Okazaki, Naoaki",
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.acl-long.277",
doi = "10.18653/v1/2023.acl-long.277",
pages = "5049--5073",
abstract = "Peer review constitutes a core component of scholarly publishing; yet it demands substantial expertise and training, and is susceptible to errors and biases. Various applications of NLP for peer reviewing assistance aim to support reviewers in this complex process, but the lack of clearly licensed datasets and multi-domain corpora prevent the systematic study of NLP for peer review. To remedy this, we introduce NLPeer{--} the first ethically sourced multidomain corpus of more than 5k papers and 11k review reports from five different venues. In addition to the new datasets of paper drafts, camera-ready versions and peer reviews from the NLP community, we establish a unified data representation and augment previous peer review datasets to include parsed and structured paper representations, rich metadata and versioning information. We complement our resource with implementations and analysis of three reviewing assistance tasks, including a novel guided skimming task. Our work paves the path towards systematic, multi-faceted, evidence-based study of peer review in NLP and beyond. The data and code are publicly available.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="dycke-etal-2023-nlpeer">
<titleInfo>
<title>NLPeer: A Unified Resource for the Computational Study of Peer Review</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nils</namePart>
<namePart type="family">Dycke</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ilia</namePart>
<namePart type="family">Kuznetsov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rogers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Boyd-Graber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naoaki</namePart>
<namePart type="family">Okazaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Peer review constitutes a core component of scholarly publishing; yet it demands substantial expertise and training, and is susceptible to errors and biases. Various applications of NLP for peer reviewing assistance aim to support reviewers in this complex process, but the lack of clearly licensed datasets and multi-domain corpora prevent the systematic study of NLP for peer review. To remedy this, we introduce NLPeer– the first ethically sourced multidomain corpus of more than 5k papers and 11k review reports from five different venues. In addition to the new datasets of paper drafts, camera-ready versions and peer reviews from the NLP community, we establish a unified data representation and augment previous peer review datasets to include parsed and structured paper representations, rich metadata and versioning information. We complement our resource with implementations and analysis of three reviewing assistance tasks, including a novel guided skimming task. Our work paves the path towards systematic, multi-faceted, evidence-based study of peer review in NLP and beyond. The data and code are publicly available.</abstract>
<identifier type="citekey">dycke-etal-2023-nlpeer</identifier>
<identifier type="doi">10.18653/v1/2023.acl-long.277</identifier>
<location>
<url>https://aclanthology.org/2023.acl-long.277</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>5049</start>
<end>5073</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T NLPeer: A Unified Resource for the Computational Study of Peer Review
%A Dycke, Nils
%A Kuznetsov, Ilia
%A Gurevych, Iryna
%Y Rogers, Anna
%Y Boyd-Graber, Jordan
%Y Okazaki, Naoaki
%S Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F dycke-etal-2023-nlpeer
%X Peer review constitutes a core component of scholarly publishing; yet it demands substantial expertise and training, and is susceptible to errors and biases. Various applications of NLP for peer reviewing assistance aim to support reviewers in this complex process, but the lack of clearly licensed datasets and multi-domain corpora prevent the systematic study of NLP for peer review. To remedy this, we introduce NLPeer– the first ethically sourced multidomain corpus of more than 5k papers and 11k review reports from five different venues. In addition to the new datasets of paper drafts, camera-ready versions and peer reviews from the NLP community, we establish a unified data representation and augment previous peer review datasets to include parsed and structured paper representations, rich metadata and versioning information. We complement our resource with implementations and analysis of three reviewing assistance tasks, including a novel guided skimming task. Our work paves the path towards systematic, multi-faceted, evidence-based study of peer review in NLP and beyond. The data and code are publicly available.
%R 10.18653/v1/2023.acl-long.277
%U https://aclanthology.org/2023.acl-long.277
%U https://doi.org/10.18653/v1/2023.acl-long.277
%P 5049-5073
Markdown (Informal)
[NLPeer: A Unified Resource for the Computational Study of Peer Review](https://aclanthology.org/2023.acl-long.277) (Dycke et al., ACL 2023)
ACL