@inproceedings{moryossef-etal-2023-open,
title = "An Open-Source Gloss-Based Baseline for Spoken to Signed Language Translation",
author = {Moryossef, Amit and
M{\"u}ller, Mathias and
G{\"o}hring, Anne and
Jiang, Zifan and
Goldberg, Yoav and
Ebling, Sarah},
editor = "Shterionov, Dimitar and
Sisto, Mirella De and
Muller, Mathias and
Landuyt, Davy Van and
Omardeen, Rehana and
Oboyle, Shaun and
Braffort, Annelies and
Roelofsen, Floris and
Blain, Fred and
Vanroy, Bram and
Avramidis, Eleftherios",
booktitle = "Proceedings of the Second International Workshop on Automatic Translation for Signed and Spoken Languages",
month = jun,
year = "2023",
address = "Tampere, Finland",
publisher = "European Association for Machine Translation",
url = "https://aclanthology.org/2023.at4ssl-1.3",
pages = "22--33",
abstract = "Sign language translation systems are complex and require many components. As a result, it is very hard to compare methods across publications. We present an open-source implementation of a text-to-gloss-to-pose-to-video pipeline approach, demonstrating conversion from German to Swiss German Sign Language, French to French Sign Language of Switzerland, and Italian to Italian Sign Language of Switzerland. We propose three different components for the text-to-gloss translation: a lemmatizer, a rule-based word reordering and dropping component, and a neural machine translation system. Gloss-to-pose conversion occurs using data from a lexicon for three different signed languages, with skeletal poses extracted from videos. To generate a sentence, the text-to-gloss system is first run, and the pose representations of the resulting signs are stitched together.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="moryossef-etal-2023-open">
<titleInfo>
<title>An Open-Source Gloss-Based Baseline for Spoken to Signed Language Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Amit</namePart>
<namePart type="family">Moryossef</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mathias</namePart>
<namePart type="family">Müller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anne</namePart>
<namePart type="family">Göhring</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zifan</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yoav</namePart>
<namePart type="family">Goldberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sarah</namePart>
<namePart type="family">Ebling</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Second International Workshop on Automatic Translation for Signed and Spoken Languages</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dimitar</namePart>
<namePart type="family">Shterionov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mirella</namePart>
<namePart type="given">De</namePart>
<namePart type="family">Sisto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mathias</namePart>
<namePart type="family">Muller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Davy</namePart>
<namePart type="given">Van</namePart>
<namePart type="family">Landuyt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rehana</namePart>
<namePart type="family">Omardeen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shaun</namePart>
<namePart type="family">Oboyle</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Annelies</namePart>
<namePart type="family">Braffort</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Floris</namePart>
<namePart type="family">Roelofsen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fred</namePart>
<namePart type="family">Blain</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bram</namePart>
<namePart type="family">Vanroy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eleftherios</namePart>
<namePart type="family">Avramidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Association for Machine Translation</publisher>
<place>
<placeTerm type="text">Tampere, Finland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Sign language translation systems are complex and require many components. As a result, it is very hard to compare methods across publications. We present an open-source implementation of a text-to-gloss-to-pose-to-video pipeline approach, demonstrating conversion from German to Swiss German Sign Language, French to French Sign Language of Switzerland, and Italian to Italian Sign Language of Switzerland. We propose three different components for the text-to-gloss translation: a lemmatizer, a rule-based word reordering and dropping component, and a neural machine translation system. Gloss-to-pose conversion occurs using data from a lexicon for three different signed languages, with skeletal poses extracted from videos. To generate a sentence, the text-to-gloss system is first run, and the pose representations of the resulting signs are stitched together.</abstract>
<identifier type="citekey">moryossef-etal-2023-open</identifier>
<location>
<url>https://aclanthology.org/2023.at4ssl-1.3</url>
</location>
<part>
<date>2023-06</date>
<extent unit="page">
<start>22</start>
<end>33</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T An Open-Source Gloss-Based Baseline for Spoken to Signed Language Translation
%A Moryossef, Amit
%A Müller, Mathias
%A Göhring, Anne
%A Jiang, Zifan
%A Goldberg, Yoav
%A Ebling, Sarah
%Y Shterionov, Dimitar
%Y Sisto, Mirella De
%Y Muller, Mathias
%Y Landuyt, Davy Van
%Y Omardeen, Rehana
%Y Oboyle, Shaun
%Y Braffort, Annelies
%Y Roelofsen, Floris
%Y Blain, Fred
%Y Vanroy, Bram
%Y Avramidis, Eleftherios
%S Proceedings of the Second International Workshop on Automatic Translation for Signed and Spoken Languages
%D 2023
%8 June
%I European Association for Machine Translation
%C Tampere, Finland
%F moryossef-etal-2023-open
%X Sign language translation systems are complex and require many components. As a result, it is very hard to compare methods across publications. We present an open-source implementation of a text-to-gloss-to-pose-to-video pipeline approach, demonstrating conversion from German to Swiss German Sign Language, French to French Sign Language of Switzerland, and Italian to Italian Sign Language of Switzerland. We propose three different components for the text-to-gloss translation: a lemmatizer, a rule-based word reordering and dropping component, and a neural machine translation system. Gloss-to-pose conversion occurs using data from a lexicon for three different signed languages, with skeletal poses extracted from videos. To generate a sentence, the text-to-gloss system is first run, and the pose representations of the resulting signs are stitched together.
%U https://aclanthology.org/2023.at4ssl-1.3
%P 22-33
Markdown (Informal)
[An Open-Source Gloss-Based Baseline for Spoken to Signed Language Translation](https://aclanthology.org/2023.at4ssl-1.3) (Moryossef et al., AT4SSL 2023)
ACL