SEAG: Structure-Aware Event Causality Generation

Zhengwei Tao, Zhi Jin, Xiaoying Bai, Haiyan Zhao, Chengfeng Dou, Yongqiang Zhao, Fang Wang, Chongyang Tao


Abstract
Extracting event causality underlies a broad spectrum of natural language processing applications. Cutting-edge methods break this task into Event Detection and Event Causality Identification. Although the pipelined solutions succeed in achieving acceptable results, the inherent nature of separating the task incurs limitations. On the one hand, it suffers from the lack of cross-task dependencies and may cause error propagation. On the other hand, it predicts events and relations separately, undermining the integrity of the event causality graph (ECG). To address such issues, in this paper, we propose an approach for Structure-Aware Event Causality Generation (SEAG). With a graph linearization module, we generate the ECG structure in a way of text2text generation based on a pre-trained language model. To foster the structural representation of the ECG, we introduce the novel Causality Structural Discrimination training paradigm in which we perform structural discriminative training alongside auto-regressive generation enabling the model to distinguish from constructed incorrect ECGs. We conduct experiments on three datasets. The experimental results demonstrate the effectiveness of structural event causality generation and the causality structural discrimination training.
Anthology ID:
2023.findings-acl.283
Volume:
Findings of the Association for Computational Linguistics: ACL 2023
Month:
July
Year:
2023
Address:
Toronto, Canada
Editors:
Anna Rogers, Jordan Boyd-Graber, Naoaki Okazaki
Venue:
Findings
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
4631–4644
Language:
URL:
https://aclanthology.org/2023.findings-acl.283
DOI:
10.18653/v1/2023.findings-acl.283
Bibkey:
Cite (ACL):
Zhengwei Tao, Zhi Jin, Xiaoying Bai, Haiyan Zhao, Chengfeng Dou, Yongqiang Zhao, Fang Wang, and Chongyang Tao. 2023. SEAG: Structure-Aware Event Causality Generation. In Findings of the Association for Computational Linguistics: ACL 2023, pages 4631–4644, Toronto, Canada. Association for Computational Linguistics.
Cite (Informal):
SEAG: Structure-Aware Event Causality Generation (Tao et al., Findings 2023)
Copy Citation:
PDF:
https://aclanthology.org/2023.findings-acl.283.pdf