@inproceedings{savoldi-etal-2024-harm,
title = "What the Harm? Quantifying the Tangible Impact of Gender Bias in Machine Translation with a Human-centered Study",
author = "Savoldi, Beatrice and
Papi, Sara and
Negri, Matteo and
Guerberof-Arenas, Ana and
Bentivogli, Luisa",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.emnlp-main.1002",
pages = "18048--18076",
abstract = "Gender bias in machine translation (MT) is recognized as an issue that can harm people and society. And yet, advancements in the field rarely involve people, the final MT users, or inform how they might be impacted by biased technologies. Current evaluations are often restricted to automatic methods, which offer an opaque estimate of what the downstream impact of gender disparities might be. We conduct an extensive human-centered study to examine if and to what extent bias in MT brings harms with tangible costs, such as quality of service gaps across women and men. To this aim, we collect behavioral data from {\textasciitilde}90 participants, who post-edited MT outputs to ensure correct gender translation. Across multiple datasets, languages, and types of users, our study shows that feminine post-editing demands significantly more technical and temporal effort, also corresponding to higher financial costs. Existing bias measurements, however, fail to reflect the found disparities. Our findings advocate for human-centered approaches that can inform the societal impact of bias.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="savoldi-etal-2024-harm">
<titleInfo>
<title>What the Harm? Quantifying the Tangible Impact of Gender Bias in Machine Translation with a Human-centered Study</title>
</titleInfo>
<name type="personal">
<namePart type="given">Beatrice</namePart>
<namePart type="family">Savoldi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Papi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matteo</namePart>
<namePart type="family">Negri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ana</namePart>
<namePart type="family">Guerberof-Arenas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Luisa</namePart>
<namePart type="family">Bentivogli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Gender bias in machine translation (MT) is recognized as an issue that can harm people and society. And yet, advancements in the field rarely involve people, the final MT users, or inform how they might be impacted by biased technologies. Current evaluations are often restricted to automatic methods, which offer an opaque estimate of what the downstream impact of gender disparities might be. We conduct an extensive human-centered study to examine if and to what extent bias in MT brings harms with tangible costs, such as quality of service gaps across women and men. To this aim, we collect behavioral data from ~90 participants, who post-edited MT outputs to ensure correct gender translation. Across multiple datasets, languages, and types of users, our study shows that feminine post-editing demands significantly more technical and temporal effort, also corresponding to higher financial costs. Existing bias measurements, however, fail to reflect the found disparities. Our findings advocate for human-centered approaches that can inform the societal impact of bias.</abstract>
<identifier type="citekey">savoldi-etal-2024-harm</identifier>
<location>
<url>https://aclanthology.org/2024.emnlp-main.1002</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>18048</start>
<end>18076</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T What the Harm? Quantifying the Tangible Impact of Gender Bias in Machine Translation with a Human-centered Study
%A Savoldi, Beatrice
%A Papi, Sara
%A Negri, Matteo
%A Guerberof-Arenas, Ana
%A Bentivogli, Luisa
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F savoldi-etal-2024-harm
%X Gender bias in machine translation (MT) is recognized as an issue that can harm people and society. And yet, advancements in the field rarely involve people, the final MT users, or inform how they might be impacted by biased technologies. Current evaluations are often restricted to automatic methods, which offer an opaque estimate of what the downstream impact of gender disparities might be. We conduct an extensive human-centered study to examine if and to what extent bias in MT brings harms with tangible costs, such as quality of service gaps across women and men. To this aim, we collect behavioral data from ~90 participants, who post-edited MT outputs to ensure correct gender translation. Across multiple datasets, languages, and types of users, our study shows that feminine post-editing demands significantly more technical and temporal effort, also corresponding to higher financial costs. Existing bias measurements, however, fail to reflect the found disparities. Our findings advocate for human-centered approaches that can inform the societal impact of bias.
%U https://aclanthology.org/2024.emnlp-main.1002
%P 18048-18076
Markdown (Informal)
[What the Harm? Quantifying the Tangible Impact of Gender Bias in Machine Translation with a Human-centered Study](https://aclanthology.org/2024.emnlp-main.1002) (Savoldi et al., EMNLP 2024)
ACL