@inproceedings{wu-etal-2024-large,
title = "Large Language Models Can Self-Correct with Key Condition Verification",
author = "Wu, Zhenyu and
Zeng, Qingkai and
Zhang, Zhihan and
Tan, Zhaoxuan and
Shen, Chao and
Jiang, Meng",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.emnlp-main.714",
pages = "12846--12867",
abstract = "Intrinsic self-correct was a method that instructed large language models (LLMs) to verify and correct their responses without external feedback. Unfortunately, the study concluded that the LLMs could not self-correct reasoning yet. We find that a simple yet effective prompting method enhances LLM performance in identifying and correcting inaccurate answers without external feedback.That is to mask a key condition in the question, add the current response to construct a verification question, and predict the condition to verify the response. The condition can be an entity in an open-domain question or a numerical value in an arithmetic question, which requires minimal effort (via prompting) to identify. We propose an iterative verify-then-correct framework to progressively identify and correct (probably) false responses, named ProCo. We conduct experiments on three reasoning tasks. On average, ProCo, with GPT-3.5-Turbo-1106 as the backend LLM, yields $+6.8$ exact match on four open-domain question answering datasets, $+14.1$ accuracy on three arithmetic reasoning datasets, and $+9.6$ accuracy on a commonsense reasoning dataset, compared to Self-Correct.Our implementation is made publicly available at https://wzy6642.github.io/proco.github.io/.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wu-etal-2024-large">
<titleInfo>
<title>Large Language Models Can Self-Correct with Key Condition Verification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zhenyu</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qingkai</namePart>
<namePart type="family">Zeng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhihan</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhaoxuan</namePart>
<namePart type="family">Tan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chao</namePart>
<namePart type="family">Shen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Meng</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Intrinsic self-correct was a method that instructed large language models (LLMs) to verify and correct their responses without external feedback. Unfortunately, the study concluded that the LLMs could not self-correct reasoning yet. We find that a simple yet effective prompting method enhances LLM performance in identifying and correcting inaccurate answers without external feedback.That is to mask a key condition in the question, add the current response to construct a verification question, and predict the condition to verify the response. The condition can be an entity in an open-domain question or a numerical value in an arithmetic question, which requires minimal effort (via prompting) to identify. We propose an iterative verify-then-correct framework to progressively identify and correct (probably) false responses, named ProCo. We conduct experiments on three reasoning tasks. On average, ProCo, with GPT-3.5-Turbo-1106 as the backend LLM, yields +6.8 exact match on four open-domain question answering datasets, +14.1 accuracy on three arithmetic reasoning datasets, and +9.6 accuracy on a commonsense reasoning dataset, compared to Self-Correct.Our implementation is made publicly available at https://wzy6642.github.io/proco.github.io/.</abstract>
<identifier type="citekey">wu-etal-2024-large</identifier>
<location>
<url>https://aclanthology.org/2024.emnlp-main.714</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>12846</start>
<end>12867</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Large Language Models Can Self-Correct with Key Condition Verification
%A Wu, Zhenyu
%A Zeng, Qingkai
%A Zhang, Zhihan
%A Tan, Zhaoxuan
%A Shen, Chao
%A Jiang, Meng
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F wu-etal-2024-large
%X Intrinsic self-correct was a method that instructed large language models (LLMs) to verify and correct their responses without external feedback. Unfortunately, the study concluded that the LLMs could not self-correct reasoning yet. We find that a simple yet effective prompting method enhances LLM performance in identifying and correcting inaccurate answers without external feedback.That is to mask a key condition in the question, add the current response to construct a verification question, and predict the condition to verify the response. The condition can be an entity in an open-domain question or a numerical value in an arithmetic question, which requires minimal effort (via prompting) to identify. We propose an iterative verify-then-correct framework to progressively identify and correct (probably) false responses, named ProCo. We conduct experiments on three reasoning tasks. On average, ProCo, with GPT-3.5-Turbo-1106 as the backend LLM, yields +6.8 exact match on four open-domain question answering datasets, +14.1 accuracy on three arithmetic reasoning datasets, and +9.6 accuracy on a commonsense reasoning dataset, compared to Self-Correct.Our implementation is made publicly available at https://wzy6642.github.io/proco.github.io/.
%U https://aclanthology.org/2024.emnlp-main.714
%P 12846-12867
Markdown (Informal)
[Large Language Models Can Self-Correct with Key Condition Verification](https://aclanthology.org/2024.emnlp-main.714) (Wu et al., EMNLP 2024)
ACL