@inproceedings{kanayama-etal-2024-incorporating,
title = "Incorporating Syntax and Lexical Knowledge to Multilingual Sentiment Classification on Large Language Models",
author = "Kanayama, Hiroshi and
Zhao, Yang and
Iwamoto, Ran and
Ohko, Takuya",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Findings of the Association for Computational Linguistics ACL 2024",
month = aug,
year = "2024",
address = "Bangkok, Thailand and virtual meeting",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-acl.286",
doi = "10.18653/v1/2024.findings-acl.286",
pages = "4810--4817",
abstract = "This paper exploits a sentiment extractor supported by syntactic and lexical resources to enhance multilingual sentiment classification solved through the generative approach, without retraining LLMs. By adding external information of words and phrases that have positive/negative polarities, the multilingual sentiment classification error was reduced by up to 33 points, and the combination of two approaches performed best especially in high-performing pairs of LLMs and languages.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kanayama-etal-2024-incorporating">
<titleInfo>
<title>Incorporating Syntax and Lexical Knowledge to Multilingual Sentiment Classification on Large Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hiroshi</namePart>
<namePart type="family">Kanayama</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ran</namePart>
<namePart type="family">Iwamoto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Takuya</namePart>
<namePart type="family">Ohko</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics ACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand and virtual meeting</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper exploits a sentiment extractor supported by syntactic and lexical resources to enhance multilingual sentiment classification solved through the generative approach, without retraining LLMs. By adding external information of words and phrases that have positive/negative polarities, the multilingual sentiment classification error was reduced by up to 33 points, and the combination of two approaches performed best especially in high-performing pairs of LLMs and languages.</abstract>
<identifier type="citekey">kanayama-etal-2024-incorporating</identifier>
<identifier type="doi">10.18653/v1/2024.findings-acl.286</identifier>
<location>
<url>https://aclanthology.org/2024.findings-acl.286</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>4810</start>
<end>4817</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Incorporating Syntax and Lexical Knowledge to Multilingual Sentiment Classification on Large Language Models
%A Kanayama, Hiroshi
%A Zhao, Yang
%A Iwamoto, Ran
%A Ohko, Takuya
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Findings of the Association for Computational Linguistics ACL 2024
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand and virtual meeting
%F kanayama-etal-2024-incorporating
%X This paper exploits a sentiment extractor supported by syntactic and lexical resources to enhance multilingual sentiment classification solved through the generative approach, without retraining LLMs. By adding external information of words and phrases that have positive/negative polarities, the multilingual sentiment classification error was reduced by up to 33 points, and the combination of two approaches performed best especially in high-performing pairs of LLMs and languages.
%R 10.18653/v1/2024.findings-acl.286
%U https://aclanthology.org/2024.findings-acl.286
%U https://doi.org/10.18653/v1/2024.findings-acl.286
%P 4810-4817
Markdown (Informal)
[Incorporating Syntax and Lexical Knowledge to Multilingual Sentiment Classification on Large Language Models](https://aclanthology.org/2024.findings-acl.286) (Kanayama et al., Findings 2024)
ACL