@inproceedings{zheng-etal-2024-hypergraph,
title = "Hypergraph-Based Session Modeling: A Multi-Collaborative Self-Supervised Approach for Enhanced Recommender Systems",
author = "Zheng, Xiangping and
Wu, Bo and
Zhang, Alex X. and
Li, Wei",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.745",
pages = "8493--8504",
abstract = "Session-based recommendation (SBR) is a challenging task that involves predicting a user{'}s next item click based on their recent session history. Presently, many state-of-the-art methodologies employ graph neural networks to model item transitions. Notwithstanding their impressive performance, graph-based models encounter significant challenges when confronted with intricate session dependencies and data sparsity in real-world scenarios, ultimately constraining their capacity to enhance recommendation accuracy. In recognition of these challenges, we introduce an innovative methodology known as {`}Mssen,{'} which stands for Multi-collaborative self-supervised learning in hypergraph neural networks. Mssen is meticulously crafted to adeptly discern user intent. Our approach initiates by representing session-based data as a hypergraph, adeptly capturing intricate, high-order relationships. Subsequently, we employ self-supervised learning on item-session hypergraphs to mitigate the challenges of data sparsity, all without necessitating manual fine-tuning, extensive search, or domain-specific expertise in augmentation selection. Comprehensive experimental analyses conducted across multiple datasets consistently underscore the superior performance of our approach when compared to existing methodologies.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zheng-etal-2024-hypergraph">
<titleInfo>
<title>Hypergraph-Based Session Modeling: A Multi-Collaborative Self-Supervised Approach for Enhanced Recommender Systems</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xiangping</namePart>
<namePart type="family">Zheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bo</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alex</namePart>
<namePart type="given">X</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Session-based recommendation (SBR) is a challenging task that involves predicting a user’s next item click based on their recent session history. Presently, many state-of-the-art methodologies employ graph neural networks to model item transitions. Notwithstanding their impressive performance, graph-based models encounter significant challenges when confronted with intricate session dependencies and data sparsity in real-world scenarios, ultimately constraining their capacity to enhance recommendation accuracy. In recognition of these challenges, we introduce an innovative methodology known as ‘Mssen,’ which stands for Multi-collaborative self-supervised learning in hypergraph neural networks. Mssen is meticulously crafted to adeptly discern user intent. Our approach initiates by representing session-based data as a hypergraph, adeptly capturing intricate, high-order relationships. Subsequently, we employ self-supervised learning on item-session hypergraphs to mitigate the challenges of data sparsity, all without necessitating manual fine-tuning, extensive search, or domain-specific expertise in augmentation selection. Comprehensive experimental analyses conducted across multiple datasets consistently underscore the superior performance of our approach when compared to existing methodologies.</abstract>
<identifier type="citekey">zheng-etal-2024-hypergraph</identifier>
<location>
<url>https://aclanthology.org/2024.lrec-main.745</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>8493</start>
<end>8504</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Hypergraph-Based Session Modeling: A Multi-Collaborative Self-Supervised Approach for Enhanced Recommender Systems
%A Zheng, Xiangping
%A Wu, Bo
%A Zhang, Alex X.
%A Li, Wei
%Y Calzolari, Nicoletta
%Y Kan, Min-Yen
%Y Hoste, Veronique
%Y Lenci, Alessandro
%Y Sakti, Sakriani
%Y Xue, Nianwen
%S Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F zheng-etal-2024-hypergraph
%X Session-based recommendation (SBR) is a challenging task that involves predicting a user’s next item click based on their recent session history. Presently, many state-of-the-art methodologies employ graph neural networks to model item transitions. Notwithstanding their impressive performance, graph-based models encounter significant challenges when confronted with intricate session dependencies and data sparsity in real-world scenarios, ultimately constraining their capacity to enhance recommendation accuracy. In recognition of these challenges, we introduce an innovative methodology known as ‘Mssen,’ which stands for Multi-collaborative self-supervised learning in hypergraph neural networks. Mssen is meticulously crafted to adeptly discern user intent. Our approach initiates by representing session-based data as a hypergraph, adeptly capturing intricate, high-order relationships. Subsequently, we employ self-supervised learning on item-session hypergraphs to mitigate the challenges of data sparsity, all without necessitating manual fine-tuning, extensive search, or domain-specific expertise in augmentation selection. Comprehensive experimental analyses conducted across multiple datasets consistently underscore the superior performance of our approach when compared to existing methodologies.
%U https://aclanthology.org/2024.lrec-main.745
%P 8493-8504
Markdown (Informal)
[Hypergraph-Based Session Modeling: A Multi-Collaborative Self-Supervised Approach for Enhanced Recommender Systems](https://aclanthology.org/2024.lrec-main.745) (Zheng et al., LREC-COLING 2024)
ACL