@inproceedings{zhao-etal-2018-learning,
title = "Learning Gender-Neutral Word Embeddings",
author = "Zhao, Jieyu and
Zhou, Yichao and
Li, Zeyu and
Wang, Wei and
Chang, Kai-Wei",
editor = "Riloff, Ellen and
Chiang, David and
Hockenmaier, Julia and
Tsujii, Jun{'}ichi",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1521/",
doi = "10.18653/v1/D18-1521",
pages = "4847--4853",
abstract = "Word embedding models have become a fundamental component in a wide range of Natural Language Processing (NLP) applications. However, embeddings trained on human-generated corpora have been demonstrated to inherit strong gender stereotypes that reflect social constructs. To address this concern, in this paper, we propose a novel training procedure for learning gender-neutral word embeddings. Our approach aims to preserve gender information in certain dimensions of word vectors while compelling other dimensions to be free of gender influence. Based on the proposed method, we generate a Gender-Neutral variant of GloVe (GN-GloVe). Quantitative and qualitative experiments demonstrate that GN-GloVe successfully isolates gender information without sacrificing the functionality of the embedding model."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhao-etal-2018-learning">
<titleInfo>
<title>Learning Gender-Neutral Word Embeddings</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jieyu</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yichao</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zeyu</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kai-Wei</namePart>
<namePart type="family">Chang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-oct-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Riloff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Chiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hockenmaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun’ichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Word embedding models have become a fundamental component in a wide range of Natural Language Processing (NLP) applications. However, embeddings trained on human-generated corpora have been demonstrated to inherit strong gender stereotypes that reflect social constructs. To address this concern, in this paper, we propose a novel training procedure for learning gender-neutral word embeddings. Our approach aims to preserve gender information in certain dimensions of word vectors while compelling other dimensions to be free of gender influence. Based on the proposed method, we generate a Gender-Neutral variant of GloVe (GN-GloVe). Quantitative and qualitative experiments demonstrate that GN-GloVe successfully isolates gender information without sacrificing the functionality of the embedding model.</abstract>
<identifier type="citekey">zhao-etal-2018-learning</identifier>
<identifier type="doi">10.18653/v1/D18-1521</identifier>
<location>
<url>https://aclanthology.org/D18-1521/</url>
</location>
<part>
<date>2018-oct-nov</date>
<extent unit="page">
<start>4847</start>
<end>4853</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Learning Gender-Neutral Word Embeddings
%A Zhao, Jieyu
%A Zhou, Yichao
%A Li, Zeyu
%A Wang, Wei
%A Chang, Kai-Wei
%Y Riloff, Ellen
%Y Chiang, David
%Y Hockenmaier, Julia
%Y Tsujii, Jun’ichi
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F zhao-etal-2018-learning
%X Word embedding models have become a fundamental component in a wide range of Natural Language Processing (NLP) applications. However, embeddings trained on human-generated corpora have been demonstrated to inherit strong gender stereotypes that reflect social constructs. To address this concern, in this paper, we propose a novel training procedure for learning gender-neutral word embeddings. Our approach aims to preserve gender information in certain dimensions of word vectors while compelling other dimensions to be free of gender influence. Based on the proposed method, we generate a Gender-Neutral variant of GloVe (GN-GloVe). Quantitative and qualitative experiments demonstrate that GN-GloVe successfully isolates gender information without sacrificing the functionality of the embedding model.
%R 10.18653/v1/D18-1521
%U https://aclanthology.org/D18-1521/
%U https://doi.org/10.18653/v1/D18-1521
%P 4847-4853
Markdown (Informal)
[Learning Gender-Neutral Word Embeddings](https://aclanthology.org/D18-1521/) (Zhao et al., EMNLP 2018)
ACL
- Jieyu Zhao, Yichao Zhou, Zeyu Li, Wei Wang, and Kai-Wei Chang. 2018. Learning Gender-Neutral Word Embeddings. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 4847–4853, Brussels, Belgium. Association for Computational Linguistics.