@inproceedings{nguyen-etal-2019-effectiveness,
title = "On the Effectiveness of the Pooling Methods for Biomedical Relation Extraction with Deep Learning",
author = "Nguyen, Tuan Ngo and
Dernoncourt, Franck and
Nguyen, Thien Huu",
editor = "Holderness, Eben and
Jimeno Yepes, Antonio and
Lavelli, Alberto and
Minard, Anne-Lyse and
Pustejovsky, James and
Rinaldi, Fabio",
booktitle = "Proceedings of the Tenth International Workshop on Health Text Mining and Information Analysis (LOUHI 2019)",
month = nov,
year = "2019",
address = "Hong Kong",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-6203/",
doi = "10.18653/v1/D19-6203",
pages = "18--27",
abstract = "Deep learning models have achieved state-of-the-art performances on many relation extraction datasets. A common element in these deep learning models involves the pooling mechanisms where a sequence of hidden vectors is aggregated to generate a single representation vector, serving as the features to perform prediction for RE. Unfortunately, the models in the literature tend to employ different strategies to perform pooling for RE, leading to the challenge to determine the best pooling mechanism for this problem, especially in the biomedical domain. In order to answer this question, in this work, we conduct a comprehensive study to evaluate the effectiveness of different pooling mechanisms for the deep learning models in biomedical RE. The experimental results suggest that dependency-based pooling is the best pooling strategy for RE in the biomedical domain, yielding the state-of-the-art performance on two benchmark datasets for this problem."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="nguyen-etal-2019-effectiveness">
<titleInfo>
<title>On the Effectiveness of the Pooling Methods for Biomedical Relation Extraction with Deep Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tuan</namePart>
<namePart type="given">Ngo</namePart>
<namePart type="family">Nguyen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Franck</namePart>
<namePart type="family">Dernoncourt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thien</namePart>
<namePart type="given">Huu</namePart>
<namePart type="family">Nguyen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Tenth International Workshop on Health Text Mining and Information Analysis (LOUHI 2019)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Eben</namePart>
<namePart type="family">Holderness</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Antonio</namePart>
<namePart type="family">Jimeno Yepes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alberto</namePart>
<namePart type="family">Lavelli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anne-Lyse</namePart>
<namePart type="family">Minard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="family">Pustejovsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fabio</namePart>
<namePart type="family">Rinaldi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Deep learning models have achieved state-of-the-art performances on many relation extraction datasets. A common element in these deep learning models involves the pooling mechanisms where a sequence of hidden vectors is aggregated to generate a single representation vector, serving as the features to perform prediction for RE. Unfortunately, the models in the literature tend to employ different strategies to perform pooling for RE, leading to the challenge to determine the best pooling mechanism for this problem, especially in the biomedical domain. In order to answer this question, in this work, we conduct a comprehensive study to evaluate the effectiveness of different pooling mechanisms for the deep learning models in biomedical RE. The experimental results suggest that dependency-based pooling is the best pooling strategy for RE in the biomedical domain, yielding the state-of-the-art performance on two benchmark datasets for this problem.</abstract>
<identifier type="citekey">nguyen-etal-2019-effectiveness</identifier>
<identifier type="doi">10.18653/v1/D19-6203</identifier>
<location>
<url>https://aclanthology.org/D19-6203/</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>18</start>
<end>27</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T On the Effectiveness of the Pooling Methods for Biomedical Relation Extraction with Deep Learning
%A Nguyen, Tuan Ngo
%A Dernoncourt, Franck
%A Nguyen, Thien Huu
%Y Holderness, Eben
%Y Jimeno Yepes, Antonio
%Y Lavelli, Alberto
%Y Minard, Anne-Lyse
%Y Pustejovsky, James
%Y Rinaldi, Fabio
%S Proceedings of the Tenth International Workshop on Health Text Mining and Information Analysis (LOUHI 2019)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong
%F nguyen-etal-2019-effectiveness
%X Deep learning models have achieved state-of-the-art performances on many relation extraction datasets. A common element in these deep learning models involves the pooling mechanisms where a sequence of hidden vectors is aggregated to generate a single representation vector, serving as the features to perform prediction for RE. Unfortunately, the models in the literature tend to employ different strategies to perform pooling for RE, leading to the challenge to determine the best pooling mechanism for this problem, especially in the biomedical domain. In order to answer this question, in this work, we conduct a comprehensive study to evaluate the effectiveness of different pooling mechanisms for the deep learning models in biomedical RE. The experimental results suggest that dependency-based pooling is the best pooling strategy for RE in the biomedical domain, yielding the state-of-the-art performance on two benchmark datasets for this problem.
%R 10.18653/v1/D19-6203
%U https://aclanthology.org/D19-6203/
%U https://doi.org/10.18653/v1/D19-6203
%P 18-27
Markdown (Informal)
[On the Effectiveness of the Pooling Methods for Biomedical Relation Extraction with Deep Learning](https://aclanthology.org/D19-6203/) (Nguyen et al., Louhi 2019)
ACL