@inproceedings{tsai-etal-2019-leveraging,
title = "Leveraging Hierarchical Category Knowledge for Data-Imbalanced Multi-Label Diagnostic Text Understanding",
author = "Tsai, Shang-Chi and
Chang, Ting-Yun and
Chen, Yun-Nung",
editor = "Holderness, Eben and
Jimeno Yepes, Antonio and
Lavelli, Alberto and
Minard, Anne-Lyse and
Pustejovsky, James and
Rinaldi, Fabio",
booktitle = "Proceedings of the Tenth International Workshop on Health Text Mining and Information Analysis (LOUHI 2019)",
month = nov,
year = "2019",
address = "Hong Kong",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-6206",
doi = "10.18653/v1/D19-6206",
pages = "39--43",
abstract = "Clinical notes are essential medical documents to record each patient{'}s symptoms. Each record is typically annotated with medical diagnostic codes, which means diagnosis and treatment. This paper focuses on predicting diagnostic codes given the descriptive present illness in electronic health records by leveraging domain knowledge. We investigate various losses in a convolutional model to utilize hierarchical category knowledge of diagnostic codes in order to allow the model to share semantics across different labels under the same category. The proposed model not only considers the external domain knowledge but also addresses the issue about data imbalance. The MIMIC3 benchmark experiments show that the proposed methods can effectively utilize category knowledge and provide informative cues to improve the performance in terms of the top-ranked diagnostic codes which is better than the prior state-of-the-art. The investigation and discussion express the potential of integrating the domain knowledge in the current machine learning based models and guiding future research directions.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="tsai-etal-2019-leveraging">
<titleInfo>
<title>Leveraging Hierarchical Category Knowledge for Data-Imbalanced Multi-Label Diagnostic Text Understanding</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shang-Chi</namePart>
<namePart type="family">Tsai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ting-Yun</namePart>
<namePart type="family">Chang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Tenth International Workshop on Health Text Mining and Information Analysis (LOUHI 2019)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Eben</namePart>
<namePart type="family">Holderness</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Antonio</namePart>
<namePart type="family">Jimeno Yepes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alberto</namePart>
<namePart type="family">Lavelli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anne-Lyse</namePart>
<namePart type="family">Minard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="family">Pustejovsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fabio</namePart>
<namePart type="family">Rinaldi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Clinical notes are essential medical documents to record each patient’s symptoms. Each record is typically annotated with medical diagnostic codes, which means diagnosis and treatment. This paper focuses on predicting diagnostic codes given the descriptive present illness in electronic health records by leveraging domain knowledge. We investigate various losses in a convolutional model to utilize hierarchical category knowledge of diagnostic codes in order to allow the model to share semantics across different labels under the same category. The proposed model not only considers the external domain knowledge but also addresses the issue about data imbalance. The MIMIC3 benchmark experiments show that the proposed methods can effectively utilize category knowledge and provide informative cues to improve the performance in terms of the top-ranked diagnostic codes which is better than the prior state-of-the-art. The investigation and discussion express the potential of integrating the domain knowledge in the current machine learning based models and guiding future research directions.</abstract>
<identifier type="citekey">tsai-etal-2019-leveraging</identifier>
<identifier type="doi">10.18653/v1/D19-6206</identifier>
<location>
<url>https://aclanthology.org/D19-6206</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>39</start>
<end>43</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Leveraging Hierarchical Category Knowledge for Data-Imbalanced Multi-Label Diagnostic Text Understanding
%A Tsai, Shang-Chi
%A Chang, Ting-Yun
%A Chen, Yun-Nung
%Y Holderness, Eben
%Y Jimeno Yepes, Antonio
%Y Lavelli, Alberto
%Y Minard, Anne-Lyse
%Y Pustejovsky, James
%Y Rinaldi, Fabio
%S Proceedings of the Tenth International Workshop on Health Text Mining and Information Analysis (LOUHI 2019)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong
%F tsai-etal-2019-leveraging
%X Clinical notes are essential medical documents to record each patient’s symptoms. Each record is typically annotated with medical diagnostic codes, which means diagnosis and treatment. This paper focuses on predicting diagnostic codes given the descriptive present illness in electronic health records by leveraging domain knowledge. We investigate various losses in a convolutional model to utilize hierarchical category knowledge of diagnostic codes in order to allow the model to share semantics across different labels under the same category. The proposed model not only considers the external domain knowledge but also addresses the issue about data imbalance. The MIMIC3 benchmark experiments show that the proposed methods can effectively utilize category knowledge and provide informative cues to improve the performance in terms of the top-ranked diagnostic codes which is better than the prior state-of-the-art. The investigation and discussion express the potential of integrating the domain knowledge in the current machine learning based models and guiding future research directions.
%R 10.18653/v1/D19-6206
%U https://aclanthology.org/D19-6206
%U https://doi.org/10.18653/v1/D19-6206
%P 39-43
Markdown (Informal)
[Leveraging Hierarchical Category Knowledge for Data-Imbalanced Multi-Label Diagnostic Text Understanding](https://aclanthology.org/D19-6206) (Tsai et al., Louhi 2019)
ACL