@inproceedings{shieh-etal-2019-towards,
    title = "Towards Understanding of Medical Randomized Controlled Trials by Conclusion Generation",
    author = "Shieh, Alexander Te-Wei  and
      Chuang, Yung-Sung  and
      Su, Shang-Yu  and
      Chen, Yun-Nung",
    editor = "Holderness, Eben  and
      Jimeno Yepes, Antonio  and
      Lavelli, Alberto  and
      Minard, Anne-Lyse  and
      Pustejovsky, James  and
      Rinaldi, Fabio",
    booktitle = "Proceedings of the Tenth International Workshop on Health Text Mining and Information Analysis (LOUHI 2019)",
    month = nov,
    year = "2019",
    address = "Hong Kong",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/D19-6214/",
    doi = "10.18653/v1/D19-6214",
    pages = "108--117",
    abstract = "Randomized controlled trials (RCTs) represent the paramount evidence of clinical medicine. Using machines to interpret the massive amount of RCTs has the potential of aiding clinical decision-making. We propose a RCT conclusion generation task from the PubMed 200k RCT sentence classification dataset to examine the effectiveness of sequence-to-sequence models on understanding RCTs. We first build a pointer-generator baseline model for conclusion generation. Then we fine-tune the state-of-the-art GPT-2 language model, which is pre-trained with general domain data, for this new medical domain task. Both automatic and human evaluation show that our GPT-2 fine-tuned models achieve improved quality and correctness in the generated conclusions compared to the baseline pointer-generator model. Further inspection points out the limitations of this current approach and future directions to explore."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="shieh-etal-2019-towards">
    <titleInfo>
        <title>Towards Understanding of Medical Randomized Controlled Trials by Conclusion Generation</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Alexander</namePart>
        <namePart type="given">Te-Wei</namePart>
        <namePart type="family">Shieh</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Yung-Sung</namePart>
        <namePart type="family">Chuang</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Shang-Yu</namePart>
        <namePart type="family">Su</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Yun-Nung</namePart>
        <namePart type="family">Chen</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-11</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the Tenth International Workshop on Health Text Mining and Information Analysis (LOUHI 2019)</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Eben</namePart>
            <namePart type="family">Holderness</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Antonio</namePart>
            <namePart type="family">Jimeno Yepes</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Alberto</namePart>
            <namePart type="family">Lavelli</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Anne-Lyse</namePart>
            <namePart type="family">Minard</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">James</namePart>
            <namePart type="family">Pustejovsky</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Fabio</namePart>
            <namePart type="family">Rinaldi</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Hong Kong</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>Randomized controlled trials (RCTs) represent the paramount evidence of clinical medicine. Using machines to interpret the massive amount of RCTs has the potential of aiding clinical decision-making. We propose a RCT conclusion generation task from the PubMed 200k RCT sentence classification dataset to examine the effectiveness of sequence-to-sequence models on understanding RCTs. We first build a pointer-generator baseline model for conclusion generation. Then we fine-tune the state-of-the-art GPT-2 language model, which is pre-trained with general domain data, for this new medical domain task. Both automatic and human evaluation show that our GPT-2 fine-tuned models achieve improved quality and correctness in the generated conclusions compared to the baseline pointer-generator model. Further inspection points out the limitations of this current approach and future directions to explore.</abstract>
    <identifier type="citekey">shieh-etal-2019-towards</identifier>
    <identifier type="doi">10.18653/v1/D19-6214</identifier>
    <location>
        <url>https://aclanthology.org/D19-6214/</url>
    </location>
    <part>
        <date>2019-11</date>
        <extent unit="page">
            <start>108</start>
            <end>117</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Towards Understanding of Medical Randomized Controlled Trials by Conclusion Generation
%A Shieh, Alexander Te-Wei
%A Chuang, Yung-Sung
%A Su, Shang-Yu
%A Chen, Yun-Nung
%Y Holderness, Eben
%Y Jimeno Yepes, Antonio
%Y Lavelli, Alberto
%Y Minard, Anne-Lyse
%Y Pustejovsky, James
%Y Rinaldi, Fabio
%S Proceedings of the Tenth International Workshop on Health Text Mining and Information Analysis (LOUHI 2019)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong
%F shieh-etal-2019-towards
%X Randomized controlled trials (RCTs) represent the paramount evidence of clinical medicine. Using machines to interpret the massive amount of RCTs has the potential of aiding clinical decision-making. We propose a RCT conclusion generation task from the PubMed 200k RCT sentence classification dataset to examine the effectiveness of sequence-to-sequence models on understanding RCTs. We first build a pointer-generator baseline model for conclusion generation. Then we fine-tune the state-of-the-art GPT-2 language model, which is pre-trained with general domain data, for this new medical domain task. Both automatic and human evaluation show that our GPT-2 fine-tuned models achieve improved quality and correctness in the generated conclusions compared to the baseline pointer-generator model. Further inspection points out the limitations of this current approach and future directions to explore.
%R 10.18653/v1/D19-6214
%U https://aclanthology.org/D19-6214/
%U https://doi.org/10.18653/v1/D19-6214
%P 108-117
Markdown (Informal)
[Towards Understanding of Medical Randomized Controlled Trials by Conclusion Generation](https://aclanthology.org/D19-6214/) (Shieh et al., Louhi 2019)
ACL