@inproceedings{tay-etal-2019-simple,
title = "Simple and Effective Curriculum Pointer-Generator Networks for Reading Comprehension over Long Narratives",
author = "Tay, Yi and
Wang, Shuohang and
Luu, Anh Tuan and
Fu, Jie and
Phan, Minh C. and
Yuan, Xingdi and
Rao, Jinfeng and
Hui, Siu Cheung and
Zhang, Aston",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1486/",
doi = "10.18653/v1/P19-1486",
pages = "4922--4931",
abstract = "This paper tackles the problem of reading comprehension over long narratives where documents easily span over thousands of tokens. We propose a curriculum learning (CL) based Pointer-Generator framework for reading/sampling over large documents, enabling diverse training of the neural model based on the notion of alternating contextual difficulty. This can be interpreted as a form of domain randomization and/or generative pretraining during training. To this end, the usage of the Pointer-Generator softens the requirement of having the answer within the context, enabling us to construct diverse training samples for learning. Additionally, we propose a new Introspective Alignment Layer (IAL), which reasons over decomposed alignments using block-based self-attention. We evaluate our proposed method on the NarrativeQA reading comprehension benchmark, achieving state-of-the-art performance, improving existing baselines by 51{\%} relative improvement on BLEU-4 and 17{\%} relative improvement on Rouge-L. Extensive ablations confirm the effectiveness of our proposed IAL and CL components."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="tay-etal-2019-simple">
<titleInfo>
<title>Simple and Effective Curriculum Pointer-Generator Networks for Reading Comprehension over Long Narratives</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yi</namePart>
<namePart type="family">Tay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shuohang</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anh</namePart>
<namePart type="given">Tuan</namePart>
<namePart type="family">Luu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jie</namePart>
<namePart type="family">Fu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Minh</namePart>
<namePart type="given">C</namePart>
<namePart type="family">Phan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xingdi</namePart>
<namePart type="family">Yuan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jinfeng</namePart>
<namePart type="family">Rao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Siu</namePart>
<namePart type="given">Cheung</namePart>
<namePart type="family">Hui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aston</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper tackles the problem of reading comprehension over long narratives where documents easily span over thousands of tokens. We propose a curriculum learning (CL) based Pointer-Generator framework for reading/sampling over large documents, enabling diverse training of the neural model based on the notion of alternating contextual difficulty. This can be interpreted as a form of domain randomization and/or generative pretraining during training. To this end, the usage of the Pointer-Generator softens the requirement of having the answer within the context, enabling us to construct diverse training samples for learning. Additionally, we propose a new Introspective Alignment Layer (IAL), which reasons over decomposed alignments using block-based self-attention. We evaluate our proposed method on the NarrativeQA reading comprehension benchmark, achieving state-of-the-art performance, improving existing baselines by 51% relative improvement on BLEU-4 and 17% relative improvement on Rouge-L. Extensive ablations confirm the effectiveness of our proposed IAL and CL components.</abstract>
<identifier type="citekey">tay-etal-2019-simple</identifier>
<identifier type="doi">10.18653/v1/P19-1486</identifier>
<location>
<url>https://aclanthology.org/P19-1486/</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>4922</start>
<end>4931</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Simple and Effective Curriculum Pointer-Generator Networks for Reading Comprehension over Long Narratives
%A Tay, Yi
%A Wang, Shuohang
%A Luu, Anh Tuan
%A Fu, Jie
%A Phan, Minh C.
%A Yuan, Xingdi
%A Rao, Jinfeng
%A Hui, Siu Cheung
%A Zhang, Aston
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F tay-etal-2019-simple
%X This paper tackles the problem of reading comprehension over long narratives where documents easily span over thousands of tokens. We propose a curriculum learning (CL) based Pointer-Generator framework for reading/sampling over large documents, enabling diverse training of the neural model based on the notion of alternating contextual difficulty. This can be interpreted as a form of domain randomization and/or generative pretraining during training. To this end, the usage of the Pointer-Generator softens the requirement of having the answer within the context, enabling us to construct diverse training samples for learning. Additionally, we propose a new Introspective Alignment Layer (IAL), which reasons over decomposed alignments using block-based self-attention. We evaluate our proposed method on the NarrativeQA reading comprehension benchmark, achieving state-of-the-art performance, improving existing baselines by 51% relative improvement on BLEU-4 and 17% relative improvement on Rouge-L. Extensive ablations confirm the effectiveness of our proposed IAL and CL components.
%R 10.18653/v1/P19-1486
%U https://aclanthology.org/P19-1486/
%U https://doi.org/10.18653/v1/P19-1486
%P 4922-4931
Markdown (Informal)
[Simple and Effective Curriculum Pointer-Generator Networks for Reading Comprehension over Long Narratives](https://aclanthology.org/P19-1486/) (Tay et al., ACL 2019)
ACL
- Yi Tay, Shuohang Wang, Anh Tuan Luu, Jie Fu, Minh C. Phan, Xingdi Yuan, Jinfeng Rao, Siu Cheung Hui, and Aston Zhang. 2019. Simple and Effective Curriculum Pointer-Generator Networks for Reading Comprehension over Long Narratives. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 4922–4931, Florence, Italy. Association for Computational Linguistics.