@inproceedings{pappas-etal-2018-beyond,
    title = "Beyond Weight Tying: Learning Joint Input-Output Embeddings for Neural Machine Translation",
    author = "Pappas, Nikolaos  and
      Miculicich, Lesly  and
      Henderson, James",
    editor = "Bojar, Ond{\v{r}}ej  and
      Chatterjee, Rajen  and
      Federmann, Christian  and
      Fishel, Mark  and
      Graham, Yvette  and
      Haddow, Barry  and
      Huck, Matthias  and
      Yepes, Antonio Jimeno  and
      Koehn, Philipp  and
      Monz, Christof  and
      Negri, Matteo  and
      N{\'e}v{\'e}ol, Aur{\'e}lie  and
      Neves, Mariana  and
      Post, Matt  and
      Specia, Lucia  and
      Turchi, Marco  and
      Verspoor, Karin",
    booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",
    month = oct,
    year = "2018",
    address = "Brussels, Belgium",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W18-6308/",
    doi = "10.18653/v1/W18-6308",
    pages = "73--83",
    abstract = "Tying the weights of the target word embeddings with the target word classifiers of neural machine translation models leads to faster training and often to better translation quality. Given the success of this parameter sharing, we investigate other forms of sharing in between no sharing and hard equality of parameters. In particular, we propose a \textit{structure-aware} output layer which captures the semantic structure of the output space of words within a joint input-output embedding. The model is a generalized form of \textit{weight tying} which shares parameters but allows learning a more flexible relationship with input word embeddings and allows the effective capacity of the output layer to be controlled. In addition, the model shares weights across output classifiers and translation contexts which allows it to better leverage prior knowledge about them. Our evaluation on English-to-Finnish and English-to-German datasets shows the effectiveness of the method against strong encoder-decoder baselines trained with or without \textit{weight tying}."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pappas-etal-2018-beyond">
    <titleInfo>
        <title>Beyond Weight Tying: Learning Joint Input-Output Embeddings for Neural Machine Translation</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Nikolaos</namePart>
        <namePart type="family">Pappas</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Lesly</namePart>
        <namePart type="family">Miculicich</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">James</namePart>
        <namePart type="family">Henderson</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2018-10</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the Third Conference on Machine Translation: Research Papers</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Ondřej</namePart>
            <namePart type="family">Bojar</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Rajen</namePart>
            <namePart type="family">Chatterjee</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Christian</namePart>
            <namePart type="family">Federmann</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Mark</namePart>
            <namePart type="family">Fishel</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Yvette</namePart>
            <namePart type="family">Graham</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Barry</namePart>
            <namePart type="family">Haddow</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Matthias</namePart>
            <namePart type="family">Huck</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Antonio</namePart>
            <namePart type="given">Jimeno</namePart>
            <namePart type="family">Yepes</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Philipp</namePart>
            <namePart type="family">Koehn</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Christof</namePart>
            <namePart type="family">Monz</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Matteo</namePart>
            <namePart type="family">Negri</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Aurélie</namePart>
            <namePart type="family">Névéol</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Mariana</namePart>
            <namePart type="family">Neves</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Matt</namePart>
            <namePart type="family">Post</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Lucia</namePart>
            <namePart type="family">Specia</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Marco</namePart>
            <namePart type="family">Turchi</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Karin</namePart>
            <namePart type="family">Verspoor</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Brussels, Belgium</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>Tying the weights of the target word embeddings with the target word classifiers of neural machine translation models leads to faster training and often to better translation quality. Given the success of this parameter sharing, we investigate other forms of sharing in between no sharing and hard equality of parameters. In particular, we propose a structure-aware output layer which captures the semantic structure of the output space of words within a joint input-output embedding. The model is a generalized form of weight tying which shares parameters but allows learning a more flexible relationship with input word embeddings and allows the effective capacity of the output layer to be controlled. In addition, the model shares weights across output classifiers and translation contexts which allows it to better leverage prior knowledge about them. Our evaluation on English-to-Finnish and English-to-German datasets shows the effectiveness of the method against strong encoder-decoder baselines trained with or without weight tying.</abstract>
    <identifier type="citekey">pappas-etal-2018-beyond</identifier>
    <identifier type="doi">10.18653/v1/W18-6308</identifier>
    <location>
        <url>https://aclanthology.org/W18-6308/</url>
    </location>
    <part>
        <date>2018-10</date>
        <extent unit="page">
            <start>73</start>
            <end>83</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Beyond Weight Tying: Learning Joint Input-Output Embeddings for Neural Machine Translation
%A Pappas, Nikolaos
%A Miculicich, Lesly
%A Henderson, James
%Y Bojar, Ondřej
%Y Chatterjee, Rajen
%Y Federmann, Christian
%Y Fishel, Mark
%Y Graham, Yvette
%Y Haddow, Barry
%Y Huck, Matthias
%Y Yepes, Antonio Jimeno
%Y Koehn, Philipp
%Y Monz, Christof
%Y Negri, Matteo
%Y Névéol, Aurélie
%Y Neves, Mariana
%Y Post, Matt
%Y Specia, Lucia
%Y Turchi, Marco
%Y Verspoor, Karin
%S Proceedings of the Third Conference on Machine Translation: Research Papers
%D 2018
%8 October
%I Association for Computational Linguistics
%C Brussels, Belgium
%F pappas-etal-2018-beyond
%X Tying the weights of the target word embeddings with the target word classifiers of neural machine translation models leads to faster training and often to better translation quality. Given the success of this parameter sharing, we investigate other forms of sharing in between no sharing and hard equality of parameters. In particular, we propose a structure-aware output layer which captures the semantic structure of the output space of words within a joint input-output embedding. The model is a generalized form of weight tying which shares parameters but allows learning a more flexible relationship with input word embeddings and allows the effective capacity of the output layer to be controlled. In addition, the model shares weights across output classifiers and translation contexts which allows it to better leverage prior knowledge about them. Our evaluation on English-to-Finnish and English-to-German datasets shows the effectiveness of the method against strong encoder-decoder baselines trained with or without weight tying.
%R 10.18653/v1/W18-6308
%U https://aclanthology.org/W18-6308/
%U https://doi.org/10.18653/v1/W18-6308
%P 73-83
Markdown (Informal)
[Beyond Weight Tying: Learning Joint Input-Output Embeddings for Neural Machine Translation](https://aclanthology.org/W18-6308/) (Pappas et al., WMT 2018)
ACL