Ahmed El-Shangiti


2024

pdf bib
Arabic Automatic Story Generation with Large Language Models
Ahmed El-Shangiti | Fakhraddin Alwajih | Muhammad Abdul-Mageed
Proceedings of The Second Arabic Natural Language Processing Conference

Large language models (LLMs) have recently emerged as a powerful tool for a wide range of language generation tasks. Nevertheless, this progress has been slower in Arabic. In this work, we focus on the task of generating stories from LLMs. For our training, we use stories acquired through machine translation (MT) as well as GPT-4. For the MT data, we develop a careful pipeline that ensures we acquire high-quality stories. For our GPT-4 data, we introduce crafted prompts that allow us to generate data well-suited to the Arabic context in both Modern Standard Arabic (MSA) and two Arabic dialects (Egyptian and Moroccan). For example, we generate stories tailored to various Arab countries on a wide host of topics. Our manual evaluation shows that our model fine-tuned on these training datasets can generate coherent stories that adhere to our instructions. We also conduct an extensive automatic and human evaluation comparing our models against state-of-the-art proprietary and open-source models. Our datasets and models will be made publicly available at https://github.com/UBC-NLP/arastories.

2023

pdf bib
TARJAMAT: Evaluation of Bard and ChatGPT on Machine Translation of Ten Arabic Varieties
Karima Kadaoui | Samar Magdy | Abdul Waheed | Md Tawkat Islam Khondaker | Ahmed El-Shangiti | El Moatez Billah Nagoudi | Muhammad Abdul-Mageed
Proceedings of ArabicNLP 2023

Despite the purported multilingual proficiency of instruction-finetuned large language models (LLMs) such as ChatGPT and Bard, the linguistic inclusivity of these models remains insufficiently explored. Considering this constraint, we present a thorough assessment of Bard and ChatGPT (encompassing both GPT-3.5 and GPT-4) regarding their machine translation proficiencies across ten varieties of Arabic. Our evaluation covers diverse Arabic varieties such as Classical Arabic (CA), Modern Standard Arabic (MSA), and several country-level dialectal variants. Our analysis indicates that LLMs may encounter challenges with dialects for which minimal public datasets exist, but on average are better translators of dialects than existing commercial systems. On CA and MSA, instruction-tuned LLMs, however, trail behind commercial systems such as Google Translate. Finally, we undertake a human-centric study to scrutinize the efficacy of the relatively recent model, Bard, in following human instructions during translation tasks. Our analysis reveals a circumscribed capability of Bard in aligning with human instructions in translation contexts. Collectively, our findings underscore that prevailing LLMs remain far from inclusive, with only limited ability to cater for the linguistic and cultural intricacies of diverse communities.

pdf bib
Arabic Fine-Grained Entity Recognition
Haneen Liqreina | Mustafa Jarrar | Mohammed Khalilia | Ahmed El-Shangiti | Muhammad Abdul-Mageed
Proceedings of ArabicNLP 2023

Traditional NER systems are typically trained to recognize coarse-grained categories of entities, and less attention is given to classifying entities into a hierarchy of fine-grained lower-level sub-types. This article aims to advance Arabic NER with fine-grained entities. We chose to extend Wojood (an open-source Nested Arabic Named Entity Corpus) with sub-types. In particular, four main entity types in Wojood (geopolitical entity (GPE), location (LOC), organization (ORG), and facility (FAC) are extended with 31 sub-types of entities. To do this, we first revised Wojood’s annotations of GPE, LOC, ORG, and FAC to be compatible with the LDC’s ACE guidelines, which yielded 5, 614 changes. Second, all mentions of GPE, LOC, ORG, and FAC (~ 44K) in Wojood are manually annotated with the LDC’s ACE subtypes. This extended version of Wojood is called WojoodFine. To evaluate our annotations, we measured the inter-annotator agreement (IAA) using both Cohen’s Kappa and F1 score, resulting in 0.9861 and 0.9889, respectively. To compute the baselines of WojoodFine, we fine-tune three pre-trained Arabic BERT encoders in three settings: flat NER, nested NER and nested NER with sub-types and achieved F1 score of 0.920, 0.866, and 0.885, respectively. Our corpus and models are open source and available at https://sina.birzeit.edu/wojood/.

pdf bib
Dolphin: A Challenging and Diverse Benchmark for Arabic NLG
El Moatez Billah Nagoudi | AbdelRahim Elmadany | Ahmed El-Shangiti | Muhammad Abdul-Mageed
Findings of the Association for Computational Linguistics: EMNLP 2023

We present Dolphin, a novel benchmark that addresses the need for a natural language generation (NLG) evaluation framework dedicated to the wide collection of Arabic languages and varieties. The proposed benchmark encompasses a broad range of 13 different NLG tasks, including dialogue generation, question answering, machine translation, summarization, among others. Dolphin comprises a substantial corpus of 40 diverse and representative public datasets across 50 test splits, carefully curated to reflect real-world scenarios and the linguistic richness of Arabic. It sets a new standard for evaluating the performance and generalization capabilities of Arabic and multilingual models, promising to enable researchers to push the boundaries of current methodologies. We provide an extensive analysis of Dolphin, highlighting its diversity and identifying gaps in current Arabic NLG research. We also offer a public leaderboard that is both interactive and modular and evaluate several Arabic and multilingual models on our benchmark, allowing us to set strong baselines against which researchers can compare.

pdf bib
QCRI at SemEval-2023 Task 3: News Genre, Framing and Persuasion Techniques Detection Using Multilingual Models
Maram Hasanain | Ahmed El-Shangiti | Rabindra Nath Nandi | Preslav Nakov | Firoj Alam
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)

Misinformation spreading in mainstream and social media has been misleading users in different ways. Manual detection and verification efforts by journalists and fact-checkers can no longer cope with the great scale and quick spread of misleading information. This motivated research and industry efforts to develop systems for analyzing and verifying news spreading online. The SemEval-2023 Task 3 is an attempt to address several subtasks under this overarching problem, targeting writing techniques used in news articles to affect readers’ opinions. The task addressed three subtasks with six languages, in addition to three “surprise” test languages, resulting in 27 different test setups. This paper describes our participating system to this task. Our team is one of the 6 teams that successfully submitted runs for all setups. The official results show that our system is ranked among the top 3 systems for 10 out of the 27 setups.