Alcides Alcoba Inciarte


2024

pdf bib
On the Utility of Pretraining Language Models on Synthetic Data
Alcides Alcoba Inciarte | Sang Yun Kwon | El Moatez Billah Nagoudi | Muhammad Abdul-Mageed
Proceedings of The Second Arabic Natural Language Processing Conference

Development of pre-trained language models has predominantly relied on large amounts of datasets. However, this dependence on abundant data has limited the applicability of these models in low-resource settings. In this work, we investigate the utility of exploiting synthetic datasets acquired from different sources to pre-train language models for Arabic. Namely, we leverage data derived based on four different methods: optical character recognition (OCR), automatic speech recognition (ASR), machine translation (MT), and generative language models. We use these datasets to pre-train models in three different architectures: encoder-only (BERTBase), encoder-decoder (T5), and decoder-only (GPT-2). We test the capabilities of resulting models on Arabic natural language understanding (NLU) tasks using the ORCA benchmark. Our results show that utilizing synthetic data can achieve performance comparable to, or even surpassing, those trained on gold data. For example, our model based on a GPT-2 architecture trained on a combined synthetic dataset surpasses the baseline model ARBERTv2. Overall, our models pre-trained on synthetic data demonstrate robust performance across various tasks. This highlights the potential of synthetic datasets in augmenting language model training in low-resource settings.

2023

pdf bib
SERENGETI: Massively Multilingual Language Models for Africa
Ife Adebara | AbdelRahim Elmadany | Muhammad Abdul-Mageed | Alcides Alcoba Inciarte
Findings of the Association for Computational Linguistics: ACL 2023

Multilingual pretrained language models (mPLMs) acquire valuable, generalizable linguistic information during pretraining and have advanced the state of the art on task-specific finetuning. To date, only ~31 out of ~2,000 African languages are covered in existing language models. We ameliorate this limitation by developing SERENGETI, a set of massively multilingual language model that covers 517 African languages and language varieties. We evaluate our novel models on eight natural language understanding tasks across 20 datasets, comparing to 4 mPLMs that cover 4-23 African languages. SERENGETI outperforms other models on 11 datasets across the eights tasks, achieving 82.27 average F_1. We also perform analyses of errors from our models, which allows us to investigate the influence of language genealogy and linguistic similarity when the models are applied under zero-shot settings. We will publicly release our models for research. Anonymous link

pdf bib
SIDLR: Slot and Intent Detection Models for Low-Resource Language Varieties
Sang Yun Kwon | Gagan Bhatia | Elmoatez Billah Nagoudi | Alcides Alcoba Inciarte | Muhammad Abdul-mageed
Tenth Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial 2023)

Intent detection and slot filling are two critical tasks in spoken and natural language understandingfor task-oriented dialog systems. In this work, we describe our participation in slot and intent detection for low-resource language varieties (SID4LR) (Aepli et al., 2023). We investigate the slot and intent detection (SID) tasks using a wide range of models and settings. Given the recent success of multitask promptedfinetuning of the large language models, we also test the generalization capability of the recent encoder-decoder model mT0 (Muennighoff et al., 2022) on new tasks (i.e., SID) in languages they have never intentionally seen. We show that our best model outperforms the baseline by a large margin (up to +30 F1 points) in both SID tasks.