Language models have been shown to reproduce underlying biases existing in their training data, which is the majority perspective by default. Proposed solutions aim to capture minority perspectives by either modelling annotator disagreements or grouping annotators based on shared metadata, both of which face significant challenges. We propose a framework that trains models without encoding annotator metadata, extracts latent embeddings informed by annotator behaviour, and creates clusters of similar opinions, that we refer to as voices. Resulting clusters are validated post-hoc via internal and external quantitative metrics, as well a qualitative analysis to identify the type of voice that each cluster represents. Our results demonstrate the strong generalisation capability of our framework, indicated by resulting clusters being adequately robust, while also capturing minority perspectives based on different demographic factors throughout two distinct datasets.
Evaluating the generalisation capabilities of multimodal models based solely on their performance on out-of-distribution data fails to capture their true robustness. This work introduces a comprehensive evaluation framework that systematically examines the role of instructions and inputs in the generalisation abilities of such models, considering architectural design, input perturbations across language and vision modalities, and increased task complexity. The proposed framework uncovers the resilience of multimodal models to extreme instruction perturbations and their vulnerability to observational changes, raising concerns about overfitting to spurious correlations. By employing this evaluation framework on current Transformer-based multimodal models for robotic manipulation tasks, we uncover limitations and suggest future advancements should focus on architectural and training innovations that better integrate multimodal inputs, enhancing a model’s generalisation prowess by prioritising sensitivity to input content over incidental correlations.
Augmenting Large Language Models (LLMs) with image-understanding capabilities has resulted in a boom of high-performing Vision-Language models (VLMs). While studying the alignment of LLMs to human values has received widespread attention, the safety of VLMs has not received the same attention. In this paper, we explore the impact of jailbreaking on three state-of-the-art VLMs, each using a distinct modeling approach. By comparing each VLM to their respective LLM backbone, we find that each VLM is more susceptible to jailbreaking. We consider this as an undesirable outcome from visual instruction-tuning, which imposes a forgetting effect on an LLM’s safety guardrails. Therefore, we provide recommendations for future work based on evaluation strategies that aim to highlight the weaknesses of a VLM, as well as take safety measures into account during visual instruction tuning.
There are two competing approaches for modelling annotator disagreement: distributional soft-labelling approaches (which aim to capture the level of disagreement) or modelling perspectives of individual annotators or groups thereof. We adapt a multi-task architecture which has previously shown success in modelling perspectives to evaluate its performance on the SEMEVAL Task 11. We do so by combining both approaches, i.e. predicting individual annotator perspectives as an interim step towards predicting annotator disagreement. Despite its previous success, we found that a multi-task approach performed poorly on datasets which contained distinct annotator opinions, suggesting that this approach may not always be suitable when modelling perspectives. Furthermore, our results explain that while strongly perspectivist approaches might not achieve state-of-the-art performance according to evaluation metrics used by distributional approaches, our approach allows for a more nuanced understanding of individual perspectives present in the data. We argue that perspectivist approaches are preferable because they enable decision makers to amplify minority views, and that it is important to re-evaluate metrics to reflect this goal.
Interactive and embodied tasks pose at least two fundamental challenges to existing Vision & Language (VL) models, including 1) grounding language in trajectories of actions and observations, and 2) referential disambiguation. To tackle these challenges, we propose an Embodied MultiModal Agent (EMMA): a unified encoder-decoder model that reasons over images and trajectories, and casts action prediction as multimodal text generation. By unifying all tasks as text generation, EMMA learns a language of actions which facilitates transfer across tasks. Different to previous modular approaches with independently trained components, we use a single multitask model where each task contributes to goal completion. EMMA performs on par with similar models on several VL benchmarks and sets a new state-of-the-art performance (36.81% success rate) on the Dialog-guided Task Completion (DTC), a benchmark to evaluate dialog-guided agents in the Alexa Arena.
We demonstrate EMMA, an embodied multimodal agent which has been developed for the Alexa Prize SimBot challenge. The agent acts within a 3D simulated environment for household tasks. EMMA is a unified and multimodal generative model aimed at solving embodied tasks. In contrast to previous work, our approach treats multiple multimodal tasks as a single multimodal conditional text generation problem, where a model learns to output text given both language and visual input. Furthermore, we showcase that a single generative agent can solve tasks with visual inputs of varying length, such as answering questions about static images, or executing actions given a sequence of previous frames and dialogue utterances. The demo system will allow users to interact conversationally with EMMA in embodied dialogues in different 3D environments from the TEACh dataset.
Visual Question Answering (VQA) systems are increasingly adept at a variety of tasks, and this technology can be used to assist blind and partially sighted people. To do this, the system’s responses must not only be accurate, but usable. It is also vital for assistive technologies to be designed with a focus on: (1) privacy, as the camera may capture a user’s mail, medication bottles, or other sensitive information; (2) transparency, so that the system’s behaviour can be explained and trusted by users; and (3) controllability, to tailor the system for a particular domain or user group. We have therefore extended a conversational VQA framework, called Aye-saac, with these objectives in mind. Specifically, we gave Aye-saac the ability to answer visual questions in the kitchen, a particularly challenging area for visually impaired people. Our system can now answer questions about quantity, positioning, and system confidence in regards to 299 kitchen objects. Questions about the spatial relations between these objects are particularly helpful to visually impaired people, and our system output more usable answers than other state of the art end-to-end VQA systems.