2023
pdf
bib
abs
Visualize Before You Write: Imagination-Guided Open-Ended Text Generation
Wanrong Zhu
|
An Yan
|
Yujie Lu
|
Wenda Xu
|
Xin Wang
|
Miguel Eckstein
|
William Yang Wang
Findings of the Association for Computational Linguistics: EACL 2023
Recent advances in text-to-image synthesis make it possible to visualize machine imaginations for a given context. On the other hand, when generating text, human writers are gifted at creative visualization, which enhances their writings by forming imaginations as blueprints before putting down the stories in words. Inspired by such a cognitive process, we ask the natural question of whether we can endow machines with the same ability to utilize visual information and construct a general picture of the context to guide text generation. In this work, we propose iNLG that uses machine-generated images to guide language models (LM) in open-ended text generation. The experiments and analyses demonstrate the effectiveness of iNLG on open-ended text generation tasks, including text completion, story generation, and concept-to-text generation in both few-shot and full-data scenarios. Both automatic metrics and human evaluations verify that the text snippets generated by our iNLG are coherent and informative while displaying minor degeneration.
pdf
bib
abs
ImaginE: An Imagination-Based Automatic Evaluation Metric for Natural Language Generation
Wanrong Zhu
|
Xin Wang
|
An Yan
|
Miguel Eckstein
|
William Yang Wang
Findings of the Association for Computational Linguistics: EACL 2023
Automatic evaluations for natural language generation (NLG) conventionally rely on token-level or embedding-level comparisons with text references. This differs from human language processing, for which visual imagination often improves comprehension. In this work, we propose ImaginE, an imagination-based automatic evaluation metric for natural language generation. With the help of StableDiffusion, a state-of-the-art text-to-image generator, we automatically generate an image as the embodied imagination for the text snippet and compute the imagination similarity using contextual embeddings. Experiments spanning several text generation tasks demonstrate that adding machine-generated images with our ImaginE displays great potential in introducing multi-modal information into NLG evaluation, and improves existing automatic metrics’ correlations with human similarity judgments in both reference-based and reference-free evaluation scenarios.
pdf
bib
abs
MedEval: A Multi-Level, Multi-Task, and Multi-Domain Medical Benchmark for Language Model Evaluation
Zexue He
|
Yu Wang
|
An Yan
|
Yao Liu
|
Eric Chang
|
Amilcare Gentili
|
Julian McAuley
|
Chun-Nan Hsu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Curated datasets for healthcare are often limited due to the need of human annotations from experts. In this paper, we present MedEval, a multi-level, multi-task, and multi-domain medical benchmark to facilitate the development of language models for healthcare. MedEval is comprehensive and consists of data from several healthcare systems and spans 35 human body regions from 8 examination modalities. With 22,779 collected sentences and 21,228 reports, we provide expert annotations at multiple levels, offering a granular potential usage of the data and supporting a wide range of tasks. Moreover, we systematically evaluated 10 generic and domain-specific language models under zero-shot and finetuning settings, from domain-adapted baselines in healthcare to general-purposed state-of-the-art large language models (e.g., ChatGPT). Our evaluations reveal varying effectiveness of the two categories of language models across different tasks, from which we notice the importance of instruction tuning for few-shot usage of large language models. Our investigation paves the way toward benchmarking language models for healthcare and provides valuable insights into the strengths and limitations of adopting large language models in medical domains, informing their practical applications and future advancements.
2021
pdf
bib
abs
Multimodal Text Style Transfer for Outdoor Vision-and-Language Navigation
Wanrong Zhu
|
Xin Wang
|
Tsu-Jui Fu
|
An Yan
|
Pradyumna Narayana
|
Kazoo Sone
|
Sugato Basu
|
William Yang Wang
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume
One of the most challenging topics in Natural Language Processing (NLP) is visually-grounded language understanding and reasoning. Outdoor vision-and-language navigation (VLN) is such a task where an agent follows natural language instructions and navigates in real-life urban environments. With the lack of human-annotated instructions that illustrate the intricate urban scenes, outdoor VLN remains a challenging task to solve. In this paper, we introduce a Multimodal Text Style Transfer (MTST) learning approach and leverage external multimodal resources to mitigate data scarcity in outdoor navigation tasks. We first enrich the navigation data by transferring the style of the instructions generated by Google Maps API, then pre-train the navigator with the augmented external outdoor navigation dataset. Experimental results show that our MTST learning approach is model-agnostic, and our MTST approach significantly outperforms the baseline models on the outdoor VLN task, improving task completion rate by 8.7% relatively on the test set.
pdf
bib
abs
L2C: Describing Visual Differences Needs Semantic Understanding of Individuals
An Yan
|
Xin Wang
|
Tsu-Jui Fu
|
William Yang Wang
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume
Recent advances in language and vision push forward the research of captioning a single image to describing visual differences between image pairs. Suppose there are two images, I_1 and I_2, and the task is to generate a description W_1,2 comparing them, existing methods directly model I_1, I_2 -> W_1,2 mapping without the semantic understanding of individuals. In this paper, we introduce a Learning-to-Compare (L2C) model, which learns to understand the semantic structures of these two images and compare them while learning to describe each one. We demonstrate that L2C benefits from a comparison between explicit semantic representations and single-image captions, and generalizes better on the new testing image pairs. It outperforms the baseline on both automatic evaluation and human evaluation for the Birds-to-Words dataset.
pdf
bib
abs
Weakly Supervised Contrastive Learning for Chest X-Ray Report Generation
An Yan
|
Zexue He
|
Xing Lu
|
Jiang Du
|
Eric Chang
|
Amilcare Gentili
|
Julian McAuley
|
Chun-Nan Hsu
Findings of the Association for Computational Linguistics: EMNLP 2021
Radiology report generation aims at generating descriptive text from radiology images automatically, which may present an opportunity to improve radiology reporting and interpretation. A typical setting consists of training encoder-decoder models on image-report pairs with a cross entropy loss, which struggles to generate informative sentences for clinical diagnoses since normal findings dominate the datasets. To tackle this challenge and encourage more clinically-accurate text outputs, we propose a novel weakly supervised contrastive loss for medical report generation. Experimental results demonstrate that our method benefits from contrasting target reports with incorrect but semantically-close ones. It outperforms previous work on both clinical correctness and text generation metrics for two public benchmarks.