Anshu Bhatia
2024
SpeechGuard: Exploring the Adversarial Robustness of Multi-modal Large Language Models
Raghuveer Peri
|
Sai Muralidhar Jayanthi
|
Srikanth Ronanki
|
Anshu Bhatia
|
Karel Mundnich
|
Saket Dingliwal
|
Nilaksh Das
|
Zejiang Hou
|
Goeric Huybrechts
|
Srikanth Vishnubhotla
|
Daniel Garcia-Romero
|
Sundararajan Srinivasan
|
Kyu Han
|
Katrin Kirchhoff
Findings of the Association for Computational Linguistics: ACL 2024
Integrated Speech and Large Language Models (SLMs) that can follow speech instructions and generate relevant text responses have gained popularity lately. However, the safety and robustness of these models remains largely unclear. In this work, we investigate the potential vulnerabilities of such instruction-following speech-language models to adversarial attacks and jailbreaking. Specifically, we design algorithms that can generate adversarial examples to jailbreak SLMs in both white-box and black-box attack settings without human involvement. Additionally, we propose countermeasures to thwart such jailbreaking attacks. Our models, trained on dialog data with speech instructions, achieve state-of-the-art performance on spoken question-answering task, scoring over 80% on both safety and helpfulness metrics. Despite safety guardrails, experiments on jailbreaking demonstrate the vulnerability of SLMs to adversarial perturbations and transfer attacks, with average attack success rates of 90% and 10% respectively when evaluated on a dataset of carefully designed harmful questions spanning 12 different toxic categories. However, we demonstrate that our proposed countermeasures reduce the attack success significantly.
2023
Masked Audio Text Encoders are Effective Multi-Modal Rescorers
Jinglun Cai
|
Monica Sunkara
|
Xilai Li
|
Anshu Bhatia
|
Xiao Pan
|
Sravan Bodapati
Findings of the Association for Computational Linguistics: ACL 2023
Masked Language Models (MLMs) have proven to be effective for second-pass rescoring in Automatic Speech Recognition (ASR) systems. In this work, we propose Masked Audio Text Encoder (MATE), a multi-modal masked language model rescorer which incorporates acoustic representations into the input space of MLM. We adopt contrastive learning for effectively aligning the modalities by learning shared representations. We show that using a multi-modal rescorer is beneficial for domain generalization of the ASR system when target domain data is unavailable. MATE reduces word error rate (WER) by 4%-16% on in-domain, and 3%-7% on out-of-domain datasets, over the text-only baseline. Additionally, with very limited amount of training data (0.8 hours) MATE achieves a WER reduction of 8%-23% over the first-pass baseline.
Search
Co-authors
- Daniel Garcia-Romero 1
- Goeric Huybrechts 1
- Jinglun Cai 1
- Karel Mundnich 1
- Katrin Kirchhoff 1
- show all...