Building upon the considerable advances in Large Language Models (LLMs), we are now equipped to address more sophisticated tasks demanding a nuanced understanding of cross-cultural contexts. A key example is recipe adaptation, which goes beyond simple translation to include a grasp of ingredients, culinary techniques, and dietary preferences specific to a given culture. We introduce a new task involving the translation and cultural adaptation of recipes between Chinese- and English-speaking cuisines. To support this investigation, we present CulturalRecipes, a unique dataset composed of automatically paired recipes written in Mandarin Chinese and English. This dataset is further enriched with a human-written and curated test set. In this intricate task of cross-cultural recipe adaptation, we evaluate the performance of various methods, including GPT-4 and other LLMs, traditional machine translation, and information retrieval techniques. Our comprehensive analysis includes both automatic and human evaluation metrics. While GPT-4 exhibits impressive abilities in adapting Chinese recipes into English, it still lags behind human expertise when translating English recipes into Chinese. This underscores the multifaceted nature of cultural adaptations. We anticipate that these insights will significantly contribute to future research on culturally aware language models and their practical application in culturally diverse contexts.
Large Vision Language Models can be used to assist visually impaired individuals by describing images they capture in their daily lives. Current evaluation datasets may not reflect the diverse cultural user backgrounds nor the situational context of this use case. To address this problem, we create a survey to determine caption preferences and propose a culture-centric evaluation benchmark by filtering VizWiz, an existing dataset with images taken by people who are blind. We then evaluate different models and prompts, investigating their reliability as visual assistants. While the evaluation results for state-of-the-art models seem promising, we identified some weak spots such as hallucinations and problems with conventional evaluation metrics. Our survey, data, code, and model outputs will be publicly available.
Over the years, many researchers have seemingly made the same observation: Brain and language model activations exhibit some structural similarities, enabling linear partial mappings between features extracted from neural recordings and computational language models. In an attempt to evaluate how much evidence has been accumulated for this observation, we survey over 30 studies spanning 10 datasets and 8 metrics. How much evidence has been accumulated, and what, if anything, is missing before we can draw conclusions? Our analysis of the evaluation methods used in the literature reveals that some of the metrics are less conservative. We also find that the accumulated evidence, for now, remains ambiguous, but correlations with model size and quality provide grounds for cautious optimism.
The increasing ubiquity of language technology necessitates a shift towards considering cultural diversity in the machine learning realm, particularly for subjective tasks that rely heavily on cultural nuances, such as Offensive Language Detection (OLD). Current understanding underscores that these tasks are substantially influenced by cultural values, however, a notable gap exists in determining if cultural features can accurately predict the success of cross-cultural transfer learning for such subjective tasks. Addressing this, our study delves into the intersection of cultural features and transfer learning effectiveness. The findings reveal that cultural value surveys indeed possess a predictive power for cross-cultural transfer learning success in OLD tasks, and that it can be further improved using offensive word distance. Based on these results, we advocate for the integration of cultural information into datasets. Additionally, we recommend leveraging data sources rich in cultural information, such as surveys, to enhance cultural adaptability. Our research signifies a step forward in the quest for more inclusive, culturally sensitive language technologies.
Language models may memorize more than just facts, including entire chunks of texts seen during training. Fair use exemptions to copyright laws typically allow for limited use of copyrighted material without permission from the copyright holder, but typically for extraction of information from copyrighted materials, rather than verbatim reproduction. This work explores the issue of copyright violations and large language models through the lens of verbatim memorization, focusing on possible redistribution of copyrighted text. We present experiments with a range of language models over a collection of popular books and coding problems, providing a conservative characterization of the extent to which language models can redistribute these materials. Overall, this research highlights the need for further examination and the potential impact on future developments in natural language processing to ensure adherence to copyright regulations. Code is at https://github.com/coastalcph/CopyrightLLMs.
Choosing a transfer language is a crucial step in transfer learning. In much previous research on dependency parsing, related languages have successfully been used. However, when parsing Latin, it has been suggested that languages such as ancient Greek could be helpful. In this work we parse Latin in a low-resource scenario, with the main goal to investigate if Greek languages are more helpful for parsing Latin than related Italic languages, and show that this is indeed the case. We further investigate the influence of other factors including training set size and content as well as linguistic distances. We find that one explanatory factor seems to be the syntactic similarity between Latin and Ancient Greek. The influence of genres or shared annotation projects seems to have a smaller impact.
Science, technology and innovation (STI) policies have evolved in the past decade. We are now progressing towards policies that are more aligned with sustainable development through integrating social, economic and environmental dimensions. In this new policy environment, the need to keep track of innovation from its conception in Science and Research has emerged. Argumentation mining, an interdisciplinary NLP field, gives rise to the required technologies. In this study, we present the first STI-driven multidisciplinary corpus of scientific abstracts annotated for argumentative units (AUs) on the sustainable development goals (SDGs) set by the United Nations (UN). AUs are the sentences conveying the Claim(s) reported in the author’s original research and the Evidence provided for support. We also present a set of strong, BERT-based neural baselines achieving an f1-score of 70.0 for Claim and 62.4 for Evidence identification evaluated with 10-fold cross-validation. To demonstrate the effectiveness of our models, we experiment with different test sets showing comparable performance across various SDG policy domains. Our dataset and models are publicly available for research purposes.