Anubha Kabra


2024

pdf bib
Reducing Privacy Risks in Online Self-Disclosures with Language Models
Yao Dou | Isadora Krsek | Tarek Naous | Anubha Kabra | Sauvik Das | Alan Ritter | Wei Xu
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Self-disclosure, while being common and rewarding in social media interaction, also poses privacy risks. In this paper, we take the initiative to protect the user-side privacy associated with online self-disclosure through detection and abstraction. We develop a taxonomy of 19 self-disclosure categories and curate a large corpus consisting of 4.8K annotated disclosure spans. We then fine-tune a language model for detection, achieving over 65% partial span F1. We further conduct an HCI user study, with 82% of participants viewing the model positively, highlighting its real-world applicability. Motivated by the user feedback, we introduce the task of self-disclosure abstraction, which is rephrasing disclosures into less specific terms while preserving their utility, e.g., “Im 16F” to “I’m a teenage girl”. We explore various fine-tuning strategies, and our best model can generate diverse abstractions that moderately reduce privacy risks while maintaining high utility according to human evaluation. To help users in deciding which disclosures to abstract, we present a task of rating their importance for context understanding. Our fine-tuned model achieves 80% accuracy, on-par with GPT-3.5. Given safety and privacy considerations, we will only release our corpus and models to researcher who agree to the ethical guidelines outlined in Ethics Statement.

pdf bib
Program-Aided Reasoners (Better) Know What They Know
Anubha Kabra | Sanketh Rangreji | Yash Mathur | Aman Madaan | Emmy Liu | Graham Neubig
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Prior work shows that program-aided reasoning, in which large language models (LLMs) are combined with programs written in programming languages such as Python, can significantly improve accuracy on various reasoning tasks. However, while accuracy is essential, it is also important for such reasoners to “know what they know”, which can be quantified through the calibration of the model. In this paper, we compare the calibration of Program Aided Language Models (PAL) and text-based Chain-of-thought (COT) prompting techniques over 5 datasets and 2 model types - LLaMA models and OpenAI models. Our results indicate that PAL leads to improved calibration in 75% of the instances. Our analysis uncovers that prompting styles that produce lesser diversity in generations also have more calibrated results, and thus we also experiment with inducing lower generation diversity using temperature scaling and find that for certain temperatures, PAL is not only more accurate but is also more calibrated than COT. Overall, we demonstrate that, in the majority of cases, program-aided reasoners better know what they know than text-based counterparts.

2023

pdf bib
Counting the Bugs in ChatGPT’s Wugs: A Multilingual Investigation into the Morphological Capabilities of a Large Language Model
Leonie Weissweiler | Valentin Hofmann | Anjali Kantharuban | Anna Cai | Ritam Dutt | Amey Hengle | Anubha Kabra | Atharva Kulkarni | Abhishek Vijayakumar | Haofei Yu | Hinrich Schuetze | Kemal Oflazer | David Mortensen
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Large language models (LLMs) have recently reached an impressive level of linguistic capability, prompting comparisons with human language skills. However, there have been relatively few systematic inquiries into the linguistic capabilities of the latest generation of LLMs, and those studies that do exist (i) ignore the remarkable ability of humans to generalize, (ii) focus only on English, and (iii) investigate syntax or semantics and overlook other capabilities that lie at the heart of human language, like morphology. Here, we close these gaps by conducting the first rigorous analysis of the morphological capabilities of ChatGPT in four typologically varied languages (specifically, English, German, Tamil, and Turkish). We apply a version of Berko’s (1958) wug test to ChatGPT, using novel, uncontaminated datasets for the four examined languages. We find that ChatGPT massively underperforms purpose-built systems, particularly in English. Overall, our results—through the lens of morphology—cast a new light on the linguistic capabilities of ChatGPT, suggesting that claims of human-like language skills are premature and misleading.

pdf bib
Multi-lingual and Multi-cultural Figurative Language Understanding
Anubha Kabra | Emmy Liu | Simran Khanuja | Alham Fikri Aji | Genta Winata | Samuel Cahyawijaya | Anuoluwapo Aremu | Perez Ogayo | Graham Neubig
Findings of the Association for Computational Linguistics: ACL 2023

Figurative language permeates human communication, but at the same time is relatively understudied in NLP. Datasets have been created in English to accelerate progress towards measuring and improving figurative language processing in language models (LMs). However, the use of figurative language is an expression of our cultural and societal experiences, making it difficult for these phrases to be universally applicable. In this work, we create a figurative language inference dataset, {pasted macro ‘DATASETNAME’}, for seven diverse languages associated with a variety of cultures: Hindi, Indonesian, Javanese, Kannada, Sundanese, Swahili and Yoruba. Our dataset reveals that each language relies on cultural and regional concepts for figurative expressions, with the highest overlap between languages originating from the same region. We assess multilingual LMs’ abilities to interpret figurative language in zero-shot and few-shot settings. All languages exhibit a significant deficiency compared to English, with variations in performance reflecting the availability of pre-training and fine-tuning data, emphasizing the need for LMs to be exposed to a broader range of linguistic and cultural variation during training. Data and code is released at https://anonymous.4open.science/r/Multilingual-Fig-QA-7B03/