Archchana Sindhujan
2024
What do Large Language Models Need for Machine Translation Evaluation?
Shenbin Qian
|
Archchana Sindhujan
|
Minnie Kabra
|
Diptesh Kanojia
|
Constantin Orasan
|
Tharindu Ranasinghe
|
Fred Blain
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Leveraging large language models (LLMs) for various natural language processing tasks has led to superlative claims about their performance. For the evaluation of machine translation (MT), existing research shows that LLMs are able to achieve results comparable to fine-tuned multilingual pre-trained language models. In this paper, we explore what translation information, such as the source, reference, translation errors and annotation guidelines, is needed for LLMs to evaluate MT quality. In addition, we investigate prompting techniques such as zero-shot, Chain of Thought (CoT) and few-shot prompting for eight language pairs covering high-, medium- and low-resource languages, leveraging varying LLM variants. Our findings indicate the importance of reference translations for an LLM-based evaluation. While larger models do not necessarily fare better, they tend to benefit more from CoT prompting, than smaller models. We also observe that LLMs do not always provide a numerical score when generating evaluations, which poses a question on their reliability for the task. Our work presents a comprehensive analysis for resource-constrained and training-less LLM-based evaluation of machine translation. We release the accrued prompt templates, code and data publicly for reproducibility.
2023
SurreyAI 2023 Submission for the Quality Estimation Shared Task
Archchana Sindhujan
|
Diptesh Kanojia
|
Constantin Orasan
|
Tharindu Ranasinghe
Proceedings of the Eighth Conference on Machine Translation
Quality Estimation (QE) systems are important in situations where it is necessary to assess the quality of translations, but there is no reference available. This paper describes the approach adopted by the SurreyAI team for addressing the Sentence-Level Direct Assessment shared task in WMT23. The proposed approach builds upon the TransQuest framework, exploring various autoencoder pre-trained language models within the MonoTransQuest architecture using single and ensemble settings. The autoencoder pre-trained language models employed in the proposed systems are XLMV, InfoXLM-large, and XLMR-large. The evaluation utilizes Spearman and Pearson correlation coefficients, assessing the relationship between machine-predicted quality scores and human judgments for 5 language pairs (English-Gujarati, English-Hindi, English-Marathi, English-Tamil and English-Telugu). The MonoTQ-InfoXLM-large approach emerges as a robust strategy, surpassing all other individual models proposed in this study by significantly improving over the baseline for the majority of the language pairs.
Search
Fix data
Co-authors
- Diptesh Kanojia 2
- Constantin Orasan 2
- Tharindu Ranasinghe 2
- Fred Blain 1
- Minnie Kabra 1
- show all...