Bhavuk Singhal


2024

pdf bib
GeoIndia: A Seq2Seq Geocoding Approach for Indian Addresses
Bhavuk Singhal | Anshu Aditya | Lokesh Todwal | Shubham Jain | Debashis Mukherjee
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track

Geocoding, the conversion of unstructured geographic text into structured spatial data, is essential for logistics, urban planning, and location-based services. Indian addresses with their diverse languages, scripts, and formats present significant challenges that existing geocoding methods often fail to address, particularly at fine-grained resolutions. In this paper, we propose GeoIndia, a novel geocoding system designed specifically for Indian addresses using hierarchical H3-cell prediction within a Seq2Seq framework. Our methodology includes a comprehensive analysis of Indian addressing systems, leading to the development of a data correction strategy that enhances prediction accuracy. We investigate two model architectures, Flan-T5-base (T5) and Llama-3-8b (QLF-Llama-3), due to their strong sequence generation capabilities. We trained around 29 models with one dedicated to each state, and results show that our approach provides superior accuracy and reliability across multiple Indian states, outperforming the well-renowned geocoding platform Google Maps. In multiple states, we achieved more than an 50% reduction in mean distance error and more than a 85% reduction in 99th percentile distance error compared to Google Maps. This advancement can help in optimizing logistics in the e-commerce sector, reducing delivery failures and improving customer satisfaction.

2023

pdf bib
Scaling Neural ITN for Numbers and Temporal Expressions in Tamil: Findings for an Agglutinative Low-resource Language
Bhavuk Singhal | Sindhuja Gopalan | Amrith Krishna | Malolan Chetlur
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track

ITN involves rewriting the verbalised form of text from spoken transcripts to its corresponding written form. The task inherently expects challenges in identifying ITN entries due to spelling variations in words arising out of dialects, transcription errors etc. Additionally, in Tamil, word boundaries between adjacent words in a sentence often get obscured due to Punarchi, i.e. phonetic transformation of these boundaries. Being morphologically rich, the words in Tamil show a high degree of agglutination due to inflection and clitics. The combination of such factors leads to a high degree of surface-form variations, making scalability with pure rule-based approaches difficult. Instead, we experiment with fine-tuning three pre-trained neural LMs, consisting of a seq2seq model (s2s), a non-autoregressive text editor (NAR) and a sequence tagger + rules combination (tagger). While the tagger approach works best in a fully-supervised setting, s2s performs the best (98.05 F-Score) when augmented with additional data, via bootstrapping and data augmentation (DA&B). S2S reports a cumulative percentage improvement of 20.1 %, and statistically significant gains for all our models with DA&B. Compared to a fully supervised setup, bootstrapping alone reports a percentage improvement as high as 14.12 %, even with a small seed set of 324 ITN entries.

pdf bib
IntenDD: A Unified Contrastive Learning Approach for Intent Detection and Discovery
Bhavuk Singhal | Ashim Gupta | V P Shivasankaran | Amrith Krishna
Findings of the Association for Computational Linguistics: EMNLP 2023

Identifying intents from dialogue utterances forms an integral component of task-oriented dialogue systems. Intent-related tasks are typically formulated either as a classification task, where the utterances are classified into predefined categories or as a clustering task when new and previously unknown intent categories need to be discovered from these utterances. Further, the intent classification may be modeled in a multiclass (MC) or multilabel (ML) setup. While typically these tasks are modeled as separate tasks, we propose IntenDD a unified approach leveraging a shared utterance encoding backbone. IntenDD uses an entirely unsupervised contrastive learning strategy for representation learning, where pseudo-labels for the unlabeled utterances are generated based on their lexical features. Additionally, we introduce a two-step post-processing setup for the classification tasks using modified adsorption. Here, first, the residuals in the training data are propagated followed by smoothing the labels both modeled in a transductive setting. Through extensive evaluations on various benchmark datasets, we find that our approach consistently outperforms competitive baselines across all three tasks. On average, IntenDD reports percentage improvements of 2.32 %, 1.26 %, and 1.52 % in their respective metrics for few-shot MC, few-shot ML, and the intent discovery tasks respectively.