Björn Deiseroth
2024
T-FREE: Subword Tokenizer-Free Generative LLMs via Sparse Representations for Memory-Efficient Embeddings
Björn Deiseroth
|
Manuel Brack
|
Patrick Schramowski
|
Kristian Kersting
|
Samuel Weinbach
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Tokenizers are crucial for encoding information in Large Language Models, but their development has recently stagnated, and they contain inherent weaknesses. Major limitations include computational overhead, ineffective vocabulary use, and unnecessarily large embedding and head layers. Additionally, their performance is biased towards a reference corpus, leading to reduced effectiveness for underrepresented languages.To remedy these issues, we propose T-Free, which directly embeds words through sparse activation patterns over character triplets and does not require a reference corpus. T-Free inherently exploits morphological similarities and allows for strong compression of embedding layers. In our exhaustive experimental evaluation, we achieve competitive downstream performance with a parameter reduction of more than 85% on these layers. Further, T-Free shows significant improvements in cross-lingual transfer learning.
Divergent Token Metrics: Measuring degradation to prune away LLM components – and optimize quantization
Björn Deiseroth
|
Max Meuer
|
Nikolas Gritsch
|
Constantin Eichenberg
|
Patrick Schramowski
|
Matthias Aßenmacher
|
Kristian Kersting
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Large Language Models (LLMs) have reshaped natural language processing with their impressive capabilities. However, their ever-increasing size has raised concerns about their effective deployment and the need for LLM compression. This study introduces the Divergent Token Metrics (DTMs), a novel approach to assessing compressed LLMs, addressing the limitations of traditional perplexity or accuracy measures that fail to accurately reflect text generation quality. DTMs measure token divergences that allow deeper insights into the subtleties of model compression, in particular, when evaluating components’ impacts individually. Utilizing the First Divergent Token Metric (FDTM) in model sparsification reveals that 25% of all attention components can be pruned beyond 90% on the Llama-2 model family, still keeping SOTA performance. For quantization, FDTM suggests that more than 80% of parameters can be naively transformed to int8 without special outlier management. These evaluations indicate the necessity of choosing appropriate compressions for parameters individually—and that FDTM can identify those—while standard metrics result in deteriorated outcomes.