An important and resource-intensive task in journalism is retrieving relevant foreign news and its adaptation for local readers. Given the vast amount of foreign articles published and the limited number of journalists available to evaluate their interestingness, this task can be particularly challenging, especially when dealing with smaller languages and countries. In this work, we propose a novel method for large-scale retrieval of potentially translation-worthy articles based on an auto-encoder neural network trained on a limited corpus of relevant foreign news. We hypothesize that the representations of interesting news can be reconstructed very well by an auto-encoder, while irrelevant news would have less adequate reconstructions since they are not used for training the network. Specifically, we focus on extracting articles from the Latvian media for Estonian news media houses. It is worth noting that the available corpora for this task are particularly limited, which adds an extra layer of difficulty to our approach. To evaluate the proposed method, we rely on manual evaluation by an Estonian journalist at Ekspress Meedia and automatic evaluation on a gold standard test set.
Depression is a mental illness that negatively affects a person’s well-being and can, if left untreated, lead to serious consequences such as suicide. Therefore, it is important to recognize the signs of depression early. In the last decade, social media has become one of the most common places to express one’s feelings. Hence, there is a possibility of text processing and applying machine learning techniques to detect possible signs of depression. In this paper, we present our approaches to solving the shared task titled Detecting Signs of Depression from Social Media Text. We explore three different approaches to solve the challenge: fine-tuning BERT model, leveraging AutoML for the construction of features and classifier selection and finally, we explore latent spaces derived from the combination of textual and knowledge-based representations. We ranked 9th out of 31 teams in the competition. Our best solution, based on knowledge graph and textual representations, was 4.9% behind the best model in terms of Macro F1, and only 1.9% behind in terms of Recall.
Keyword extraction is the task of retrieving words that are essential to the content of a given document. Researchers proposed various approaches to tackle this problem. At the top-most level, approaches are divided into ones that require training - supervised and ones that do not - unsupervised. In this study, we are interested in settings, where for a language under investigation, no training data is available. More specifically, we explore whether pretrained multilingual language models can be employed for zero-shot cross-lingual keyword extraction on low-resource languages with limited or no available labeled training data and whether they outperform state-of-the-art unsupervised keyword extractors. The comparison is conducted on six news article datasets covering two high-resource languages, English and Russian, and four low-resource languages, Croatian, Estonian, Latvian, and Slovenian. We find that the pretrained models fine-tuned on a multilingual corpus covering languages that do not appear in the test set (i.e. in a zero-shot setting), consistently outscore unsupervised models in all six languages.
Ontologies are increasingly used for machine reasoning over the last few years. They can provide explanations of concepts or be used for concept classification if there exists a mapping from the desired labels to the relevant ontology. This paper presents a practical use of an ontology for the purpose of data set generalization in an oversampling setting, with the aim of improving classification models. We demonstrate our solution on a novel financial sentiment data set using the Financial Industry Business Ontology (FIBO). The results show that generalization-based data enrichment benefits simpler models in a general setting and more complex models such as BERT in low-data setting.
Transformer-based neural networks offer very good classification performance across a wide range of domains, but do not provide explanations of their predictions. While several explanation methods, including SHAP, address the problem of interpreting deep learning models, they are not adapted to operate on state-of-the-art transformer-based neural networks such as BERT. Another shortcoming of these methods is that their visualization of explanations in the form of lists of most relevant words does not take into account the sequential and structurally dependent nature of text. This paper proposes the TransSHAP method that adapts SHAP to transformer models including BERT-based text classifiers. It advances SHAP visualizations by showing explanations in a sequential manner, assessed by human evaluators as competitive to state-of-the-art solutions.
Keyword extraction is the task of identifying words (or multi-word expressions) that best describe a given document and serve in news portals to link articles of similar topics. In this work, we develop and evaluate our methods on four novel data sets covering less-represented, morphologically-rich languages in European news media industry (Croatian, Estonian, Latvian, and Russian). First, we perform evaluation of two supervised neural transformer-based methods, Transformer-based Neural Tagger for Keyword Identification (TNT-KID) and Bidirectional Encoder Representations from Transformers (BERT) with an additional Bidirectional Long Short-Term Memory Conditional Random Fields (BiLSTM CRF) classification head, and compare them to a baseline Term Frequency - Inverse Document Frequency (TF-IDF) based unsupervised approach. Next, we show that by combining the keywords retrieved by both neural transformer-based methods and extending the final set of keywords with an unsupervised TF-IDF based technique, we can drastically improve the recall of the system, making it appropriate for usage as a recommendation system in the media house environment.
We present a system for zero-shot cross-lingual offensive language and hate speech classification. The system was trained on English datasets and tested on a task of detecting hate speech and offensive social media content in a number of languages without any additional training. Experiments show an impressive ability of both models to generalize from English to other languages. There is however an expected gap in performance between the tested cross-lingual models and the monolingual models. The best performing model (offensive content classifier) is available online as a REST API.
Large pretrained language models using the transformer neural network architecture are becoming a dominant methodology for many natural language processing tasks, such as question answering, text classification, word sense disambiguation, text completion and machine translation. Commonly comprising hundreds of millions of parameters, these models offer state-of-the-art performance, but at the expense of interpretability. The attention mechanism is the main component of transformer networks. We present AttViz, a method for exploration of self-attention in transformer networks, which can help in explanation and debugging of the trained models by showing associations between text tokens in an input sequence. We show that existing deep learning pipelines can be explored with AttViz, which offers novel visualizations of the attention heads and their aggregations. We implemented the proposed methods in an online toolkit and an offline library. Using examples from news analysis, we demonstrate how AttViz can be used to inspect and potentially better understand what a model has learned.
This paper presents tools and data sources collected and released by the EMBEDDIA project, supported by the European Union’s Horizon 2020 research and innovation program. The collected resources were offered to participants of a hackathon organized as part of the EACL Hackashop on News Media Content Analysis and Automated Report Generation in February 2021. The hackathon had six participating teams who addressed different challenges, either from the list of proposed challenges or their own news-industry-related tasks. This paper goes beyond the scope of the hackathon, as it brings together in a coherent and compact form most of the resources developed, collected and released by the EMBEDDIA project. Moreover, it constitutes a handy source for news media industry and researchers in the fields of Natural Language Processing and Social Science.
Team Name: team-8 Embeddia Tool: Cross-Lingual Document Retrieval Zosa et al. Dataset: Estonian and Latvian news datasets abstract: Contemporary news media face increasing amounts of available data that can be of use when prioritizing, selecting and discovering new news. In this work we propose a methodology for retrieving interesting articles in a cross-border news discovery setting. More specifically, we explore how a set of seed documents in Estonian can be projected in Latvian document space and serve as a basis for discovery of novel interesting pieces of Latvian news that would interest Estonian readers. The proposed methodology was evaluated by Estonian journalist who confirmed that in the best setting, from top 10 retrieved Latvian documents, half of them represent news that are potentially interesting to be taken by the Estonian media house and presented to Estonian readers.