Bohan Li


2024

pdf bib
A Two-Stage Framework with Self-Supervised Distillation for Cross-Domain Text Classification
Yunlong Feng | Bohan Li | Libo Qin | Xiao Xu | Wanxiang Che
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Cross-domain text classification is a crucial task as it enables models to adapt to a target domain that lacks labeled data. It leverages or reuses rich labeled data from the different but related source domain(s) and unlabeled data from the target domain. To this end, previous work focuses on either extracting domain-invariant features or task-agnostic features, ignoring domain-aware features that may be present in the target domain and could be useful for the downstream task. In this paper, we propose a two-stage framework for cross-domain text classification. In the first stage, we finetune the model with mask language modeling (MLM) and labeled data from the source domain. In the second stage, we further fine-tune the model with self-supervised distillation (SSD) and unlabeled data from the target domain. We evaluate its performance on a public cross-domain text classification benchmark and the experiment results show that our method achieves new state-of-the-art results for both single-source domain adaptations (94.17% +1.03%) and multi-source domain adaptations (95.09% +1.34%).

2022

pdf bib
Inverse is Better! Fast and Accurate Prompt for Few-shot Slot Tagging
Yutai Hou | Cheng Chen | Xianzhen Luo | Bohan Li | Wanxiang Che
Findings of the Association for Computational Linguistics: ACL 2022

Prompting methods recently achieve impressive success in few-shot learning. These methods modify input samples with prompt sentence pieces, and decode label tokens to map samples to corresponding labels. However, such a paradigm is very inefficient for the task of slot tagging. Since slot tagging samples are multiple consecutive words in a sentence, the prompting methods have to enumerate all n-grams token spans to find all the possible slots, which greatly slows down the prediction. To tackle this, we introduce an inverse paradigm for prompting. Different from the classic prompts mapping tokens to labels, we reversely predict slot values given slot types. Such inverse prompting only requires a one-turn prediction for each slot type and greatly speeds up the prediction. Besides, we propose a novel Iterative Prediction Strategy, from which the model learns to refine predictions by considering the relations between different slot types. We find, somewhat surprisingly, the proposed method not only predicts faster but also significantly improves the effect (improve over 6.1 F1-scores on 10-shot setting) and achieves new state-of-the-art performance.

pdf bib
MetaPrompting: Learning to Learn Better Prompts
Yutai Hou | Hongyuan Dong | Xinghao Wang | Bohan Li | Wanxiang Che
Proceedings of the 29th International Conference on Computational Linguistics

Prompting method is regarded as one of the crucial progress for few-shot nature language processing. Recent research on prompting moves from discrete tokens based “hard prompts” to continuous “soft prompts”, which employ learnable vectors as pseudo prompt tokens and achieve better performance. Though showing promising prospects, these soft-prompting methods are observed to rely heavily on good initialization to take effect. Unfortunately, obtaining a perfect initialization for soft prompts requires understanding of inner language models working and elaborate design, which is no easy task and has to restart from scratch for each new task. To remedy this, we propose a generalized soft prompting method called MetaPrompting, which adopts the well-recognized model-agnostic meta-learning algorithm to automatically find better prompt initialization that facilitates fast adaptation to new prompting tasks. Extensive experiments show MetaPrompting tackles soft prompt initialization problem and brings significant improvement on three different datasets (over 7 points improvement in accuracy for 1-shot setting), achieving new state-of-the-art performance.

2020

pdf bib
On the Sentence Embeddings from Pre-trained Language Models
Bohan Li | Hao Zhou | Junxian He | Mingxuan Wang | Yiming Yang | Lei Li
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Pre-trained contextual representations like BERT have achieved great success in natural language processing. However, the sentence embeddings from the pre-trained language models without fine-tuning have been found to poorly capture semantic meaning of sentences. In this paper, we argue that the semantic information in the BERT embeddings is not fully exploited. We first reveal the theoretical connection between the masked language model pre-training objective and the semantic similarity task theoretically, and then analyze the BERT sentence embeddings empirically. We find that BERT always induces a non-smooth anisotropic semantic space of sentences, which harms its performance of semantic similarity. To address this issue, we propose to transform the anisotropic sentence embedding distribution to a smooth and isotropic Gaussian distribution through normalizing flows that are learned with an unsupervised objective. Experimental results show that our proposed BERT-flow method obtains significant performance gains over the state-of-the-art sentence embeddings on a variety of semantic textual similarity tasks. The code is available at https://github.com/bohanli/BERT-flow.

2019

pdf bib
A Surprisingly Effective Fix for Deep Latent Variable Modeling of Text
Bohan Li | Junxian He | Graham Neubig | Taylor Berg-Kirkpatrick | Yiming Yang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

When trained effectively, the Variational Autoencoder (VAE) is both a powerful language model and an effective representation learning framework. In practice, however, VAEs are trained with the evidence lower bound (ELBO) as a surrogate objective to the intractable marginal data likelihood. This approach to training yields unstable results, frequently leading to a disastrous local optimum known as posterior collapse. In this paper, we investigate a simple fix for posterior collapse which yields surprisingly effective results. The combination of two known heuristics, previously considered only in isolation, substantially improves held-out likelihood, reconstruction, and latent representation learning when compared with previous state-of-the-art methods. More interestingly, while our experiments demonstrate superiority on these principle evaluations, our method obtains a worse ELBO. We use these results to argue that the typical surrogate objective for VAEs may not be sufficient or necessarily appropriate for balancing the goals of representation learning and data distribution modeling.