Boli Chen


2024

pdf bib
RaFe: Ranking Feedback Improves Query Rewriting for RAG
Shengyu Mao | Yong Jiang | Boli Chen | Xiao Li | Peng Wang | Xinyu Wang | Pengjun Xie | Fei Huang | Huajun Chen | Ningyu Zhang
Findings of the Association for Computational Linguistics: EMNLP 2024

As Large Language Models (LLMs) and Retrieval Augmentation Generation (RAG) techniques have evolved, query rewriting has been widely incorporated into the RAG system for downstream tasks like open-domain QA to enhance document retrieval by reformulating queries. Many works have attempted to improve query rewriting in smaller models to avoid rewriting with costly LLMs, and the most common method is to employ reinforcement learning for feedback training. However, current methods require annotations (labeled relevant documents or downstream answers) or predesigned rewards for feedback, lack generalization, and fail to utilize signals tailored for query rewriting. In this paper, we propose RaFe, a framework for training query rewriting models. By leveraging reranker, RaFe provides ranking feedback aligned well with the rewriting objectives without needing signals from annotations and supports both online and offline training models. Experimental results demonstrate that with a general and publicly available reranker, RaFe can effectively steer the training for rewrite models.

pdf bib
Geo-Encoder: A Chunk-Argument Bi-Encoder Framework for Chinese Geographic Re-Ranking
Yong Cao | Ruixue Ding | Boli Chen | Xianzhi Li | Min Chen | Daniel Hershcovich | Pengjun Xie | Fei Huang
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

Chinese geographic re-ranking task aims to find the most relevant addresses among retrieved candidates, which is crucial for location-related services such as navigation maps. Unlike the general sentences, Chinese geographic contexts are closely intertwined with geographical concepts, from general spans (e.g., province) to specific spans (e.g., road). Given this feature, we propose an innovative framework, namely Geo-Encoder, to more effectively integrate Chinese geographical semantics into re-ranking pipelines. Our methodology begins by employing off-the-shelf tools to associate text with geographical spans, treating them as chunking units. Then, we present a multi-task learning module to simultaneously acquire an effective attention matrix that determines chunk contributions to geographic representations. Furthermore, we put forth an asynchronous update mechanism for the proposed task, aiming to guide the model to focus on specific chunks. Experiments on two Chinese benchmark datasets, show that the Geo-Encoder achieves significant improvements when compared to state-of-the-art baselines. Notably, it leads to a substantial improvement in the Hit@1 score of MGEO-BERT, increasing it by 6.22% from 62.76 to 68.98 on the GeoTES dataset.

2022

pdf bib
Forging Multiple Training Objectives for Pre-trained Language Models via Meta-Learning
Hongqiu Wu | Ruixue Ding | Hai Zhao | Boli Chen | Pengjun Xie | Fei Huang | Min Zhang
Findings of the Association for Computational Linguistics: EMNLP 2022

Multiple pre-training objectives fill the vacancy of the understanding capability of single-objective language modeling, which serves the ultimate purpose of pre-trained language models (PrLMs), generalizing well on a mass of scenarios. However, learning multiple training objectives in a single model is challenging due to the unknown relative significance as well as the potential contrariety between them. Empirical studies have shown that the current objective sampling in an ad-hoc manual setting makes the learned language representation barely converge to the desired optimum. Thus, we propose MOMETAS, a novel adaptive sampler based on meta-learning, which learns the latent sampling pattern on arbitrary pre-training objectives. Such a design is lightweight with negligible additional training overhead. To validate our approach, we adopt five objectives and conduct continual pre-training with BERT-base and BERT-large models, where MOMETAS demonstrates universal performance gain over other rule-based sampling strategies on 14 natural language processing tasks.

2020

pdf bib
Hyperbolic Capsule Networks for Multi-Label Classification
Boli Chen | Xin Huang | Lin Xiao | Liping Jing
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Although deep neural networks are effective at extracting high-level features, classification methods usually encode an input into a vector representation via simple feature aggregation operations (e.g. pooling). Such operations limit the performance. For instance, a multi-label document may contain several concepts. In this case, one vector can not sufficiently capture its salient and discriminative content. Thus, we propose Hyperbolic Capsule Networks (HyperCaps) for Multi-Label Classification (MLC), which have two merits. First, hyperbolic capsules are designed to capture fine-grained document information for each label, which has the ability to characterize complicated structures among labels and documents. Second, Hyperbolic Dynamic Routing (HDR) is introduced to aggregate hyperbolic capsules in a label-aware manner, so that the label-level discriminative information can be preserved along the depth of neural networks. To efficiently handle large-scale MLC datasets, we additionally present a new routing method to adaptively adjust the capsule number during routing. Extensive experiments are conducted on four benchmark datasets. Compared with the state-of-the-art methods, HyperCaps significantly improves the performance of MLC especially on tail labels.

2019

pdf bib
Label-Specific Document Representation for Multi-Label Text Classification
Lin Xiao | Xin Huang | Boli Chen | Liping Jing
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Multi-label text classification (MLTC) aims to tag most relevant labels for the given document. In this paper, we propose a Label-Specific Attention Network (LSAN) to learn a label-specific document representation. LSAN takes advantage of label semantic information to determine the semantic connection between labels and document for constructing label-specific document representation. Meanwhile, the self-attention mechanism is adopted to identify the label-specific document representation from document content information. In order to seamlessly integrate the above two parts, an adaptive fusion strategy is proposed, which can effectively output the comprehensive label-specific document representation to build multi-label text classifier. Extensive experimental results demonstrate that LSAN consistently outperforms the state-of-the-art methods on four different datasets, especially on the prediction of low-frequency labels. The code and hyper-parameter settings are released to facilitate other researchers.