Boyan Xu


2025

pdf bib
Dr.ECI: Infusing Large Language Models with Causal Knowledge for Decomposed Reasoning in Event Causality Identification
Ruichu Cai | Shengyin Yu | Jiahao Zhang | Wei Chen | Boyan Xu | Keli Zhang
Proceedings of the 31st International Conference on Computational Linguistics

Despite the demonstrated potential of Large Language Models (LLMs) in diverse NLP tasks, their causal reasoning capability appears inadequate when evaluated within the context of the event causality identification (ECI) task. The ECI tasks pose significant complexity for LLMs and necessitate comprehensive causal priors for accurate identification. To improve the performance of LLMs for causal reasoning, we propose a multi-agent Decomposed reasoning framework for Event Causality Identification, designated as Dr.ECI. In the discovery stage, Dr.ECI incorporates specialized agents such as Causal Explorer and Mediator Detector, which capture implicit causality and indirect causality more effectively. In the reasoning stage, Dr.ECI introduces the agents Direct Reasoner and Indirect Reasoner, which leverage the knowledge of the generalized causal structure specific to the ECI. Extensive evaluations demonstrate the state-of-the-art performance of Dr.ECI comparing with baselines based on LLMs and supervised training. Our implementation will be open-sourced at https://github.com/DMIRLAB-Group/Dr.ECI.

pdf bib
CACA: Context-Aware Cross-Attention Network for Extractive Aspect Sentiment Quad Prediction
Bingfeng Chen | Haoran Xu | Yongqi Luo | Boyan Xu | Ruichu Cai | Zhifeng Hao
Proceedings of the 31st International Conference on Computational Linguistics

Aspect Sentiment Quad Prediction(ASQP) enhances the scope of aspect-based sentiment analysis by introducing the necessity to predict both explicit and implicit aspect and opinion terms. Existing leading generative ASQP approaches do not modeling the contextual relationship of the review sentence to predict implicit terms. However, introducing the contextual information into the pre-trained language models framework is non-trivial due to the inflexibility of the generative encoder-decoder architecture. To well utilize the contextual information, we propose an extractive ASQP framework, CACA, which features with Context-Aware Cross-Attention Network. When implicit terms are present, the Context-Aware Cross-Attention Network enhances the alignment of aspects and opinions, through alternating updates of explicit and implicit representations. Additionally, contrastive learning is introduced in the implicit representation learning process. Experimental results on three benchmarks demonstrate the effectiveness of CACA. Our implementation will be open-sourced at https://github.com/DMIRLAB-Group/CACA.

2024

pdf bib
S2GSL: Incorporating Segment to Syntactic Enhanced Graph Structure Learning for Aspect-based Sentiment Analysis
Bingfeng Chen | Qihan Ouyang | Yongqi Luo | Boyan Xu | Ruichu Cai | Zhifeng Hao
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Previous graph-based approaches in Aspect-based Sentiment Analysis(ABSA) have demonstrated impressive performance by utilizing graph neural networks and attention mechanisms to learn structures of static dependency trees and dynamic latent trees. However, incorporating both semantic and syntactic information simultaneously within complex global structures can introduce irrelevant contexts and syntactic dependencies during the process of graph structure learning, potentially resulting in inaccurate predictions. In order to address the issues above, we propose S2GSL, incorporating Segment to Syntactic enhanced Graph Structure Learning for ABSA. Specifically, S2GSL is featured with a segment-aware semantic graph learning and a syntax-based latent graph learning enabling the removal of irrelevant contexts and dependencies, respectively. We further propose a self-adaptive aggregation network that facilitates the fusion of two graph learning branches, thereby achieving complementarity across diverse structures. Experimental results on four benchmarks demonstrate the effectiveness of our framework.

2020

pdf bib
TAG : Type Auxiliary Guiding for Code Comment Generation
Ruichu Cai | Zhihao Liang | Boyan Xu | Zijian Li | Yuexing Hao | Yao Chen
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Existing leading code comment generation approaches with the structure-to-sequence framework ignores the type information of the interpretation of the code, e.g., operator, string, etc. However, introducing the type information into the existing framework is non-trivial due to the hierarchical dependence among the type information. In order to address the issues above, we propose a Type Auxiliary Guiding encoder-decoder framework for the code comment generation task which considers the source code as an N-ary tree with type information associated with each node. Specifically, our framework is featured with a Type-associated Encoder and a Type-restricted Decoder which enables adaptive summarization of the source code. We further propose a hierarchical reinforcement learning method to resolve the training difficulties of our proposed framework. Extensive evaluations demonstrate the state-of-the-art performance of our framework with both the auto-evaluated metrics and case studies.