Carlotta Domeniconi


2024

pdf bib
Subword Attention and Post-Processing for Rare and Unknown Contextualized Embeddings
Raj Patel | Carlotta Domeniconi
Findings of the Association for Computational Linguistics: NAACL 2024

Word representations are an important aspect of Natural Language Processing (NLP). Representations are trained using large corpora, either as independent static embeddings or as part of a deep contextualized model. While word embeddings are useful, they struggle on rare and unknown words. As such, a large body of work has been done on estimating rare and unknown words. However, most of the methods focus on static embeddings, with few models focused on contextualized representations. In this work, we propose SPRUCE, a rare/unknown embedding architecture that focuses on contextualized representations. This architecture uses subword attention and embedding post-processing combined with the contextualized model to produce high quality embeddings. We then demonstrate these techniques lead to improved performance in most intrinsic and downstream tasks.

2023

pdf bib
Enhancing Out-of-Vocabulary Estimation with Subword Attention
Raj Patel | Carlotta Domeniconi
Findings of the Association for Computational Linguistics: ACL 2023

Word embedding methods like word2vec and GloVe have been shown to learn strong representations of words. However, these methods only learn representations for words in the training corpus and therefore struggle to handle unknown and new words, known as out-of-vocabulary (OOV) words. As a result, there have been multiple attempts to learn OOV word representations in a similar fashion to how humans learn new words, using word roots/subwords and/or surrounding words. However, while most of these approaches use advanced architectures like attention on the context of the OOV word, they tend to use simple structures like ngram addition or character based convolutional neural networks (CNN) to handle processing subword information. In response to this, we propose SubAtt, a transformer based OOV estimation model that uses attention mechanisms on both the context and the subwords. In addition to attention, we also show that pretraining subword representations also leads to improvement in OOV estimation. We show SubAtt outperforms current state-of-the-art OOV estimation models.